| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > an31s | GIF version | ||
| Description: Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006.) | 
| Ref | Expression | 
|---|---|
| an32s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
| Ref | Expression | 
|---|---|
| an31s | ⊢ (((𝜒 ∧ 𝜓) ∧ 𝜑) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | an32s.1 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 2 | 1 | exp31 364 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | 
| 3 | 2 | com13 80 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) | 
| 4 | 3 | imp31 256 | 1 ⊢ (((𝜒 ∧ 𝜓) ∧ 𝜑) → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem is referenced by: genpassl 7591 genpassu 7592 | 
| Copyright terms: Public domain | W3C validator |