Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpassu GIF version

Theorem genpassu 7356
 Description: Associativity of upper cuts. Lemma for genpassg 7357. (Contributed by Jim Kingdon, 11-Dec-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpassg.4 dom 𝐹 = (P × P)
genpassg.5 ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)
genpassg.6 ((𝑓Q𝑔QQ) → ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺)))
Assertion
Ref Expression
genpassu ((𝐴P𝐵P𝐶P) → (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) = (2nd ‘(𝐴𝐹(𝐵𝐹𝐶))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑓,𝐹,𝑔   𝐶,𝑓,𝑔,,𝑣,𝑤,𝑥,𝑦,𝑧   ,𝐹,𝑣,𝑤,𝑥,𝑦,𝑧

Proof of Theorem genpassu
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 prop 7306 . . . . . . . . 9 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 elprnqu 7313 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑓 ∈ (2nd𝐴)) → 𝑓Q)
31, 2sylan 281 . . . . . . . 8 ((𝐴P𝑓 ∈ (2nd𝐴)) → 𝑓Q)
4 prop 7306 . . . . . . . . . . . . . . . 16 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
5 elprnqu 7313 . . . . . . . . . . . . . . . 16 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑔 ∈ (2nd𝐵)) → 𝑔Q)
64, 5sylan 281 . . . . . . . . . . . . . . 15 ((𝐵P𝑔 ∈ (2nd𝐵)) → 𝑔Q)
7 prop 7306 . . . . . . . . . . . . . . . . . . . . 21 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
8 elprnqu 7313 . . . . . . . . . . . . . . . . . . . . 21 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P ∈ (2nd𝐶)) → Q)
97, 8sylan 281 . . . . . . . . . . . . . . . . . . . 20 ((𝐶P ∈ (2nd𝐶)) → Q)
10 oveq2 5789 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = (𝑔𝐺) → (𝑓𝐺𝑡) = (𝑓𝐺(𝑔𝐺)))
1110adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 = (𝑔𝐺) ∧ (𝑓Q𝑔QQ)) → (𝑓𝐺𝑡) = (𝑓𝐺(𝑔𝐺)))
12 genpassg.6 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓Q𝑔QQ) → ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺)))
1312adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 = (𝑔𝐺) ∧ (𝑓Q𝑔QQ)) → ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺)))
1411, 13eqtr4d 2176 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 = (𝑔𝐺) ∧ (𝑓Q𝑔QQ)) → (𝑓𝐺𝑡) = ((𝑓𝐺𝑔)𝐺))
1514eqeq2d 2152 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 = (𝑔𝐺) ∧ (𝑓Q𝑔QQ)) → (𝑥 = (𝑓𝐺𝑡) ↔ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
1615expcom 115 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓Q𝑔QQ) → (𝑡 = (𝑔𝐺) → (𝑥 = (𝑓𝐺𝑡) ↔ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
1716pm5.32d 446 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓Q𝑔QQ) → ((𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
18173expa 1182 . . . . . . . . . . . . . . . . . . . 20 (((𝑓Q𝑔Q) ∧ Q) → ((𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
199, 18sylan2 284 . . . . . . . . . . . . . . . . . . 19 (((𝑓Q𝑔Q) ∧ (𝐶P ∈ (2nd𝐶))) → ((𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
2019anassrs 398 . . . . . . . . . . . . . . . . . 18 ((((𝑓Q𝑔Q) ∧ 𝐶P) ∧ ∈ (2nd𝐶)) → ((𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
2120rexbidva 2435 . . . . . . . . . . . . . . . . 17 (((𝑓Q𝑔Q) ∧ 𝐶P) → (∃ ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ ∃ ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
22 r19.41v 2590 . . . . . . . . . . . . . . . . 17 (∃ ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (∃ ∈ (2nd𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
2321, 22bitr3di 194 . . . . . . . . . . . . . . . 16 (((𝑓Q𝑔Q) ∧ 𝐶P) → (∃ ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃ ∈ (2nd𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
2423an32s 558 . . . . . . . . . . . . . . 15 (((𝑓Q𝐶P) ∧ 𝑔Q) → (∃ ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃ ∈ (2nd𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
256, 24sylan2 284 . . . . . . . . . . . . . 14 (((𝑓Q𝐶P) ∧ (𝐵P𝑔 ∈ (2nd𝐵))) → (∃ ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃ ∈ (2nd𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
2625anassrs 398 . . . . . . . . . . . . 13 ((((𝑓Q𝐶P) ∧ 𝐵P) ∧ 𝑔 ∈ (2nd𝐵)) → (∃ ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃ ∈ (2nd𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
2726rexbidva 2435 . . . . . . . . . . . 12 (((𝑓Q𝐶P) ∧ 𝐵P) → (∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑔 ∈ (2nd𝐵)(∃ ∈ (2nd𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
28 r19.41v 2590 . . . . . . . . . . . 12 (∃𝑔 ∈ (2nd𝐵)(∃ ∈ (2nd𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
2927, 28syl6bb 195 . . . . . . . . . . 11 (((𝑓Q𝐶P) ∧ 𝐵P) → (∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
3029an31s 560 . . . . . . . . . 10 (((𝐵P𝐶P) ∧ 𝑓Q) → (∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
3130exbidv 1798 . . . . . . . . 9 (((𝐵P𝐶P) ∧ 𝑓Q) → (∃𝑡𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑡(∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
32 genpelvl.2 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
3332caovcl 5932 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔QQ) → (𝑔𝐺) ∈ Q)
34 elisset 2703 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔𝐺) ∈ Q → ∃𝑡 𝑡 = (𝑔𝐺))
3533, 34syl 14 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔QQ) → ∃𝑡 𝑡 = (𝑔𝐺))
3635biantrurd 303 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔QQ) → (𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ (∃𝑡 𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
37 19.41v 1875 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝑡 𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
3836, 37syl6bbr 197 . . . . . . . . . . . . . . . . . . . 20 ((𝑔QQ) → (𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
399, 38sylan2 284 . . . . . . . . . . . . . . . . . . 19 ((𝑔Q ∧ (𝐶P ∈ (2nd𝐶))) → (𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
4039anassrs 398 . . . . . . . . . . . . . . . . . 18 (((𝑔Q𝐶P) ∧ ∈ (2nd𝐶)) → (𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
4140rexbidva 2435 . . . . . . . . . . . . . . . . 17 ((𝑔Q𝐶P) → (∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃ ∈ (2nd𝐶)∃𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
42 rexcom4 2712 . . . . . . . . . . . . . . . . 17 (∃ ∈ (2nd𝐶)∃𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑡 ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
4341, 42syl6bb 195 . . . . . . . . . . . . . . . 16 ((𝑔Q𝐶P) → (∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡 ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
4443ancoms 266 . . . . . . . . . . . . . . 15 ((𝐶P𝑔Q) → (∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡 ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
456, 44sylan2 284 . . . . . . . . . . . . . 14 ((𝐶P ∧ (𝐵P𝑔 ∈ (2nd𝐵))) → (∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡 ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
4645anassrs 398 . . . . . . . . . . . . 13 (((𝐶P𝐵P) ∧ 𝑔 ∈ (2nd𝐵)) → (∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡 ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
4746rexbidva 2435 . . . . . . . . . . . 12 ((𝐶P𝐵P) → (∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑔 ∈ (2nd𝐵)∃𝑡 ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
4847ancoms 266 . . . . . . . . . . 11 ((𝐵P𝐶P) → (∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑔 ∈ (2nd𝐵)∃𝑡 ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
49 rexcom4 2712 . . . . . . . . . . 11 (∃𝑔 ∈ (2nd𝐵)∃𝑡 ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑡𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
5048, 49syl6bb 195 . . . . . . . . . 10 ((𝐵P𝐶P) → (∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
5150adantr 274 . . . . . . . . 9 (((𝐵P𝐶P) ∧ 𝑓Q) → (∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
52 df-rex 2423 . . . . . . . . . . 11 (∃𝑡 ∈ (2nd ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑡(𝑡 ∈ (2nd ‘(𝐵𝐹𝐶)) ∧ 𝑥 = (𝑓𝐺𝑡)))
53 genpelvl.1 . . . . . . . . . . . . . 14 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
5453, 32genpelvu 7344 . . . . . . . . . . . . 13 ((𝐵P𝐶P) → (𝑡 ∈ (2nd ‘(𝐵𝐹𝐶)) ↔ ∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑡 = (𝑔𝐺)))
5554anbi1d 461 . . . . . . . . . . . 12 ((𝐵P𝐶P) → ((𝑡 ∈ (2nd ‘(𝐵𝐹𝐶)) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
5655exbidv 1798 . . . . . . . . . . 11 ((𝐵P𝐶P) → (∃𝑡(𝑡 ∈ (2nd ‘(𝐵𝐹𝐶)) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ ∃𝑡(∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
5752, 56syl5bb 191 . . . . . . . . . 10 ((𝐵P𝐶P) → (∃𝑡 ∈ (2nd ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑡(∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
5857adantr 274 . . . . . . . . 9 (((𝐵P𝐶P) ∧ 𝑓Q) → (∃𝑡 ∈ (2nd ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑡(∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
5931, 51, 583bitr4rd 220 . . . . . . . 8 (((𝐵P𝐶P) ∧ 𝑓Q) → (∃𝑡 ∈ (2nd ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
603, 59sylan2 284 . . . . . . 7 (((𝐵P𝐶P) ∧ (𝐴P𝑓 ∈ (2nd𝐴))) → (∃𝑡 ∈ (2nd ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
6160anassrs 398 . . . . . 6 ((((𝐵P𝐶P) ∧ 𝐴P) ∧ 𝑓 ∈ (2nd𝐴)) → (∃𝑡 ∈ (2nd ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
6261rexbidva 2435 . . . . 5 (((𝐵P𝐶P) ∧ 𝐴P) → (∃𝑓 ∈ (2nd𝐴)∃𝑡 ∈ (2nd ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
6362ancoms 266 . . . 4 ((𝐴P ∧ (𝐵P𝐶P)) → (∃𝑓 ∈ (2nd𝐴)∃𝑡 ∈ (2nd ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
64633impb 1178 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑓 ∈ (2nd𝐴)∃𝑡 ∈ (2nd ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
65 genpassg.5 . . . . . 6 ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)
6665caovcl 5932 . . . . 5 ((𝐵P𝐶P) → (𝐵𝐹𝐶) ∈ P)
6753, 32genpelvu 7344 . . . . 5 ((𝐴P ∧ (𝐵𝐹𝐶) ∈ P) → (𝑥 ∈ (2nd ‘(𝐴𝐹(𝐵𝐹𝐶))) ↔ ∃𝑓 ∈ (2nd𝐴)∃𝑡 ∈ (2nd ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡)))
6866, 67sylan2 284 . . . 4 ((𝐴P ∧ (𝐵P𝐶P)) → (𝑥 ∈ (2nd ‘(𝐴𝐹(𝐵𝐹𝐶))) ↔ ∃𝑓 ∈ (2nd𝐴)∃𝑡 ∈ (2nd ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡)))
69683impb 1178 . . 3 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (2nd ‘(𝐴𝐹(𝐵𝐹𝐶))) ↔ ∃𝑓 ∈ (2nd𝐴)∃𝑡 ∈ (2nd ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡)))
70 df-rex 2423 . . . . 5 (∃𝑡 ∈ (2nd ‘(𝐴𝐹𝐵))∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺) ↔ ∃𝑡(𝑡 ∈ (2nd ‘(𝐴𝐹𝐵)) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)))
7153, 32genpelvu 7344 . . . . . . . 8 ((𝐴P𝐵P) → (𝑡 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)𝑡 = (𝑓𝐺𝑔)))
72713adant3 1002 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (𝑡 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)𝑡 = (𝑓𝐺𝑔)))
7372anbi1d 461 . . . . . 6 ((𝐴P𝐵P𝐶P) → ((𝑡 ∈ (2nd ‘(𝐴𝐹𝐵)) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)) ↔ (∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺))))
7473exbidv 1798 . . . . 5 ((𝐴P𝐵P𝐶P) → (∃𝑡(𝑡 ∈ (2nd ‘(𝐴𝐹𝐵)) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)) ↔ ∃𝑡(∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺))))
7570, 74syl5bb 191 . . . 4 ((𝐴P𝐵P𝐶P) → (∃𝑡 ∈ (2nd ‘(𝐴𝐹𝐵))∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺) ↔ ∃𝑡(∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺))))
7665caovcl 5932 . . . . . 6 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ P)
7753, 32genpelvu 7344 . . . . . 6 (((𝐴𝐹𝐵) ∈ P𝐶P) → (𝑥 ∈ (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) ↔ ∃𝑡 ∈ (2nd ‘(𝐴𝐹𝐵))∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)))
7876, 77sylan 281 . . . . 5 (((𝐴P𝐵P) ∧ 𝐶P) → (𝑥 ∈ (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) ↔ ∃𝑡 ∈ (2nd ‘(𝐴𝐹𝐵))∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)))
79783impa 1177 . . . 4 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) ↔ ∃𝑡 ∈ (2nd ‘(𝐴𝐹𝐵))∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)))
8032caovcl 5932 . . . . . . . . . . . . . . . . . . 19 ((𝑓Q𝑔Q) → (𝑓𝐺𝑔) ∈ Q)
81 elisset 2703 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝐺𝑔) ∈ Q → ∃𝑡 𝑡 = (𝑓𝐺𝑔))
8280, 81syl 14 . . . . . . . . . . . . . . . . . 18 ((𝑓Q𝑔Q) → ∃𝑡 𝑡 = (𝑓𝐺𝑔))
8382biantrurd 303 . . . . . . . . . . . . . . . . 17 ((𝑓Q𝑔Q) → (∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ (∃𝑡 𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺))))
84 oveq1 5788 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = (𝑓𝐺𝑔) → (𝑡𝐺) = ((𝑓𝐺𝑔)𝐺))
8584eqeq2d 2152 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = (𝑓𝐺𝑔) → (𝑥 = (𝑡𝐺) ↔ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
8685rexbidv 2439 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = (𝑓𝐺𝑔) → (∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺) ↔ ∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
8786pm5.32i 450 . . . . . . . . . . . . . . . . . . 19 ((𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)) ↔ (𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
8887exbii 1585 . . . . . . . . . . . . . . . . . 18 (∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)) ↔ ∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
89 19.41v 1875 . . . . . . . . . . . . . . . . . 18 (∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝑡 𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
9088, 89bitri 183 . . . . . . . . . . . . . . . . 17 (∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)) ↔ (∃𝑡 𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
9183, 90syl6bbr 197 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔Q) → (∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺))))
926, 91sylan2 284 . . . . . . . . . . . . . . 15 ((𝑓Q ∧ (𝐵P𝑔 ∈ (2nd𝐵))) → (∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺))))
9392anassrs 398 . . . . . . . . . . . . . 14 (((𝑓Q𝐵P) ∧ 𝑔 ∈ (2nd𝐵)) → (∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺))))
9493rexbidva 2435 . . . . . . . . . . . . 13 ((𝑓Q𝐵P) → (∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑔 ∈ (2nd𝐵)∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺))))
95 rexcom4 2712 . . . . . . . . . . . . 13 (∃𝑔 ∈ (2nd𝐵)∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)) ↔ ∃𝑡𝑔 ∈ (2nd𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)))
9694, 95syl6bb 195 . . . . . . . . . . . 12 ((𝑓Q𝐵P) → (∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝑔 ∈ (2nd𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺))))
9796ancoms 266 . . . . . . . . . . 11 ((𝐵P𝑓Q) → (∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝑔 ∈ (2nd𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺))))
983, 97sylan2 284 . . . . . . . . . 10 ((𝐵P ∧ (𝐴P𝑓 ∈ (2nd𝐴))) → (∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝑔 ∈ (2nd𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺))))
9998anassrs 398 . . . . . . . . 9 (((𝐵P𝐴P) ∧ 𝑓 ∈ (2nd𝐴)) → (∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝑔 ∈ (2nd𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺))))
10099rexbidva 2435 . . . . . . . 8 ((𝐵P𝐴P) → (∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑓 ∈ (2nd𝐴)∃𝑡𝑔 ∈ (2nd𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺))))
101 rexcom4 2712 . . . . . . . 8 (∃𝑓 ∈ (2nd𝐴)∃𝑡𝑔 ∈ (2nd𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)) ↔ ∃𝑡𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)))
102100, 101syl6bb 195 . . . . . . 7 ((𝐵P𝐴P) → (∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺))))
103 r19.41v 2590 . . . . . . . . . 10 (∃𝑔 ∈ (2nd𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)) ↔ (∃𝑔 ∈ (2nd𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)))
104103rexbii 2445 . . . . . . . . 9 (∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)) ↔ ∃𝑓 ∈ (2nd𝐴)(∃𝑔 ∈ (2nd𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)))
105 r19.41v 2590 . . . . . . . . 9 (∃𝑓 ∈ (2nd𝐴)(∃𝑔 ∈ (2nd𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)) ↔ (∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)))
106104, 105bitri 183 . . . . . . . 8 (∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)) ↔ (∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)))
107106exbii 1585 . . . . . . 7 (∃𝑡𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)) ↔ ∃𝑡(∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺)))
108102, 107syl6bb 195 . . . . . 6 ((𝐵P𝐴P) → (∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺))))
109108ancoms 266 . . . . 5 ((𝐴P𝐵P) → (∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺))))
1101093adant3 1002 . . . 4 ((𝐴P𝐵P𝐶P) → (∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (2nd𝐶)𝑥 = (𝑡𝐺))))
11175, 79, 1103bitr4d 219 . . 3 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) ↔ ∃𝑓 ∈ (2nd𝐴)∃𝑔 ∈ (2nd𝐵)∃ ∈ (2nd𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
11264, 69, 1113bitr4rd 220 . 2 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) ↔ 𝑥 ∈ (2nd ‘(𝐴𝐹(𝐵𝐹𝐶)))))
113112eqrdv 2138 1 ((𝐴P𝐵P𝐶P) → (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) = (2nd ‘(𝐴𝐹(𝐵𝐹𝐶))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1332  ∃wex 1469   ∈ wcel 1481  ∃wrex 2418  {crab 2421  ⟨cop 3534   × cxp 4544  dom cdm 4546  ‘cfv 5130  (class class class)co 5781   ∈ cmpo 5783  1st c1st 6043  2nd c2nd 6044  Qcnq 7111  Pcnp 7122 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-qs 6442  df-ni 7135  df-nqqs 7179  df-inp 7297 This theorem is referenced by:  genpassg  7357
 Copyright terms: Public domain W3C validator