ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancom1s GIF version

Theorem ancom1s 559
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypothesis
Ref Expression
an32s.1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
ancom1s (((𝜓𝜑) ∧ 𝜒) → 𝜃)

Proof of Theorem ancom1s
StepHypRef Expression
1 pm3.22 263 . 2 ((𝜓𝜑) → (𝜑𝜓))
2 an32s.1 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
31, 2sylan 281 1 (((𝜓𝜑) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  bilukdc  1386  prarloc  7444  leltadd  8345  divmul13ap  8611  modqmulmodr  10325  fzomaxdif  11055  lgsdir2  13574
  Copyright terms: Public domain W3C validator