ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpassl GIF version

Theorem genpassl 7644
Description: Associativity of lower cuts. Lemma for genpassg 7646. (Contributed by Jim Kingdon, 11-Dec-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpassg.4 dom 𝐹 = (P × P)
genpassg.5 ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)
genpassg.6 ((𝑓Q𝑔QQ) → ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺)))
Assertion
Ref Expression
genpassl ((𝐴P𝐵P𝐶P) → (1st ‘((𝐴𝐹𝐵)𝐹𝐶)) = (1st ‘(𝐴𝐹(𝐵𝐹𝐶))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑓,𝐹,𝑔   𝐶,𝑓,𝑔,,𝑣,𝑤,𝑥,𝑦,𝑧   ,𝐹,𝑣,𝑤,𝑥,𝑦,𝑧

Proof of Theorem genpassl
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 prop 7595 . . . . . . . . 9 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 elprnql 7601 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑓 ∈ (1st𝐴)) → 𝑓Q)
31, 2sylan 283 . . . . . . . 8 ((𝐴P𝑓 ∈ (1st𝐴)) → 𝑓Q)
4 prop 7595 . . . . . . . . . . . . . . . 16 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
5 elprnql 7601 . . . . . . . . . . . . . . . 16 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑔 ∈ (1st𝐵)) → 𝑔Q)
64, 5sylan 283 . . . . . . . . . . . . . . 15 ((𝐵P𝑔 ∈ (1st𝐵)) → 𝑔Q)
7 prop 7595 . . . . . . . . . . . . . . . . . . . . 21 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
8 elprnql 7601 . . . . . . . . . . . . . . . . . . . . 21 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P ∈ (1st𝐶)) → Q)
97, 8sylan 283 . . . . . . . . . . . . . . . . . . . 20 ((𝐶P ∈ (1st𝐶)) → Q)
10 oveq2 5959 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = (𝑔𝐺) → (𝑓𝐺𝑡) = (𝑓𝐺(𝑔𝐺)))
1110adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 = (𝑔𝐺) ∧ (𝑓Q𝑔QQ)) → (𝑓𝐺𝑡) = (𝑓𝐺(𝑔𝐺)))
12 genpassg.6 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓Q𝑔QQ) → ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺)))
1312adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 = (𝑔𝐺) ∧ (𝑓Q𝑔QQ)) → ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺)))
1411, 13eqtr4d 2242 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 = (𝑔𝐺) ∧ (𝑓Q𝑔QQ)) → (𝑓𝐺𝑡) = ((𝑓𝐺𝑔)𝐺))
1514eqeq2d 2218 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 = (𝑔𝐺) ∧ (𝑓Q𝑔QQ)) → (𝑥 = (𝑓𝐺𝑡) ↔ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
1615expcom 116 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓Q𝑔QQ) → (𝑡 = (𝑔𝐺) → (𝑥 = (𝑓𝐺𝑡) ↔ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
1716pm5.32d 450 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓Q𝑔QQ) → ((𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
18173expa 1206 . . . . . . . . . . . . . . . . . . . 20 (((𝑓Q𝑔Q) ∧ Q) → ((𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
199, 18sylan2 286 . . . . . . . . . . . . . . . . . . 19 (((𝑓Q𝑔Q) ∧ (𝐶P ∈ (1st𝐶))) → ((𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
2019anassrs 400 . . . . . . . . . . . . . . . . . 18 ((((𝑓Q𝑔Q) ∧ 𝐶P) ∧ ∈ (1st𝐶)) → ((𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
2120rexbidva 2504 . . . . . . . . . . . . . . . . 17 (((𝑓Q𝑔Q) ∧ 𝐶P) → (∃ ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ ∃ ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
22 r19.41v 2663 . . . . . . . . . . . . . . . . 17 (∃ ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (∃ ∈ (1st𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
2321, 22bitr3di 195 . . . . . . . . . . . . . . . 16 (((𝑓Q𝑔Q) ∧ 𝐶P) → (∃ ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃ ∈ (1st𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
2423an32s 568 . . . . . . . . . . . . . . 15 (((𝑓Q𝐶P) ∧ 𝑔Q) → (∃ ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃ ∈ (1st𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
256, 24sylan2 286 . . . . . . . . . . . . . 14 (((𝑓Q𝐶P) ∧ (𝐵P𝑔 ∈ (1st𝐵))) → (∃ ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃ ∈ (1st𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
2625anassrs 400 . . . . . . . . . . . . 13 ((((𝑓Q𝐶P) ∧ 𝐵P) ∧ 𝑔 ∈ (1st𝐵)) → (∃ ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃ ∈ (1st𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
2726rexbidva 2504 . . . . . . . . . . . 12 (((𝑓Q𝐶P) ∧ 𝐵P) → (∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑔 ∈ (1st𝐵)(∃ ∈ (1st𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
28 r19.41v 2663 . . . . . . . . . . . 12 (∃𝑔 ∈ (1st𝐵)(∃ ∈ (1st𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
2927, 28bitrdi 196 . . . . . . . . . . 11 (((𝑓Q𝐶P) ∧ 𝐵P) → (∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
3029an31s 570 . . . . . . . . . 10 (((𝐵P𝐶P) ∧ 𝑓Q) → (∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
3130exbidv 1849 . . . . . . . . 9 (((𝐵P𝐶P) ∧ 𝑓Q) → (∃𝑡𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑡(∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
32 genpelvl.2 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
3332caovcl 6108 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔QQ) → (𝑔𝐺) ∈ Q)
34 elisset 2787 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔𝐺) ∈ Q → ∃𝑡 𝑡 = (𝑔𝐺))
3533, 34syl 14 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔QQ) → ∃𝑡 𝑡 = (𝑔𝐺))
3635biantrurd 305 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔QQ) → (𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ (∃𝑡 𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
37 19.41v 1927 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝑡 𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
3836, 37bitr4di 198 . . . . . . . . . . . . . . . . . . . 20 ((𝑔QQ) → (𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
399, 38sylan2 286 . . . . . . . . . . . . . . . . . . 19 ((𝑔Q ∧ (𝐶P ∈ (1st𝐶))) → (𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
4039anassrs 400 . . . . . . . . . . . . . . . . . 18 (((𝑔Q𝐶P) ∧ ∈ (1st𝐶)) → (𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
4140rexbidva 2504 . . . . . . . . . . . . . . . . 17 ((𝑔Q𝐶P) → (∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃ ∈ (1st𝐶)∃𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
42 rexcom4 2796 . . . . . . . . . . . . . . . . 17 (∃ ∈ (1st𝐶)∃𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑡 ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
4341, 42bitrdi 196 . . . . . . . . . . . . . . . 16 ((𝑔Q𝐶P) → (∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡 ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
4443ancoms 268 . . . . . . . . . . . . . . 15 ((𝐶P𝑔Q) → (∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡 ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
456, 44sylan2 286 . . . . . . . . . . . . . 14 ((𝐶P ∧ (𝐵P𝑔 ∈ (1st𝐵))) → (∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡 ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
4645anassrs 400 . . . . . . . . . . . . 13 (((𝐶P𝐵P) ∧ 𝑔 ∈ (1st𝐵)) → (∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡 ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
4746rexbidva 2504 . . . . . . . . . . . 12 ((𝐶P𝐵P) → (∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑔 ∈ (1st𝐵)∃𝑡 ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
4847ancoms 268 . . . . . . . . . . 11 ((𝐵P𝐶P) → (∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑔 ∈ (1st𝐵)∃𝑡 ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
49 rexcom4 2796 . . . . . . . . . . 11 (∃𝑔 ∈ (1st𝐵)∃𝑡 ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑡𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
5048, 49bitrdi 196 . . . . . . . . . 10 ((𝐵P𝐶P) → (∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
5150adantr 276 . . . . . . . . 9 (((𝐵P𝐶P) ∧ 𝑓Q) → (∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺))))
52 df-rex 2491 . . . . . . . . . . 11 (∃𝑡 ∈ (1st ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑡(𝑡 ∈ (1st ‘(𝐵𝐹𝐶)) ∧ 𝑥 = (𝑓𝐺𝑡)))
53 genpelvl.1 . . . . . . . . . . . . . 14 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
5453, 32genpelvl 7632 . . . . . . . . . . . . 13 ((𝐵P𝐶P) → (𝑡 ∈ (1st ‘(𝐵𝐹𝐶)) ↔ ∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑡 = (𝑔𝐺)))
5554anbi1d 465 . . . . . . . . . . . 12 ((𝐵P𝐶P) → ((𝑡 ∈ (1st ‘(𝐵𝐹𝐶)) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
5655exbidv 1849 . . . . . . . . . . 11 ((𝐵P𝐶P) → (∃𝑡(𝑡 ∈ (1st ‘(𝐵𝐹𝐶)) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ ∃𝑡(∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
5752, 56bitrid 192 . . . . . . . . . 10 ((𝐵P𝐶P) → (∃𝑡 ∈ (1st ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑡(∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
5857adantr 276 . . . . . . . . 9 (((𝐵P𝐶P) ∧ 𝑓Q) → (∃𝑡 ∈ (1st ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑡(∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
5931, 51, 583bitr4rd 221 . . . . . . . 8 (((𝐵P𝐶P) ∧ 𝑓Q) → (∃𝑡 ∈ (1st ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
603, 59sylan2 286 . . . . . . 7 (((𝐵P𝐶P) ∧ (𝐴P𝑓 ∈ (1st𝐴))) → (∃𝑡 ∈ (1st ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
6160anassrs 400 . . . . . 6 ((((𝐵P𝐶P) ∧ 𝐴P) ∧ 𝑓 ∈ (1st𝐴)) → (∃𝑡 ∈ (1st ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
6261rexbidva 2504 . . . . 5 (((𝐵P𝐶P) ∧ 𝐴P) → (∃𝑓 ∈ (1st𝐴)∃𝑡 ∈ (1st ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
6362ancoms 268 . . . 4 ((𝐴P ∧ (𝐵P𝐶P)) → (∃𝑓 ∈ (1st𝐴)∃𝑡 ∈ (1st ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
64633impb 1202 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑓 ∈ (1st𝐴)∃𝑡 ∈ (1st ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
65 genpassg.5 . . . . . 6 ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)
6665caovcl 6108 . . . . 5 ((𝐵P𝐶P) → (𝐵𝐹𝐶) ∈ P)
6753, 32genpelvl 7632 . . . . 5 ((𝐴P ∧ (𝐵𝐹𝐶) ∈ P) → (𝑥 ∈ (1st ‘(𝐴𝐹(𝐵𝐹𝐶))) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑡 ∈ (1st ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡)))
6866, 67sylan2 286 . . . 4 ((𝐴P ∧ (𝐵P𝐶P)) → (𝑥 ∈ (1st ‘(𝐴𝐹(𝐵𝐹𝐶))) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑡 ∈ (1st ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡)))
69683impb 1202 . . 3 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (1st ‘(𝐴𝐹(𝐵𝐹𝐶))) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑡 ∈ (1st ‘(𝐵𝐹𝐶))𝑥 = (𝑓𝐺𝑡)))
70 df-rex 2491 . . . . 5 (∃𝑡 ∈ (1st ‘(𝐴𝐹𝐵))∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺) ↔ ∃𝑡(𝑡 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)))
7153, 32genpelvl 7632 . . . . . . . 8 ((𝐴P𝐵P) → (𝑡 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)𝑡 = (𝑓𝐺𝑔)))
72713adant3 1020 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (𝑡 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)𝑡 = (𝑓𝐺𝑔)))
7372anbi1d 465 . . . . . 6 ((𝐴P𝐵P𝐶P) → ((𝑡 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)) ↔ (∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺))))
7473exbidv 1849 . . . . 5 ((𝐴P𝐵P𝐶P) → (∃𝑡(𝑡 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)) ↔ ∃𝑡(∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺))))
7570, 74bitrid 192 . . . 4 ((𝐴P𝐵P𝐶P) → (∃𝑡 ∈ (1st ‘(𝐴𝐹𝐵))∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺) ↔ ∃𝑡(∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺))))
7665caovcl 6108 . . . . . 6 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ P)
7753, 32genpelvl 7632 . . . . . 6 (((𝐴𝐹𝐵) ∈ P𝐶P) → (𝑥 ∈ (1st ‘((𝐴𝐹𝐵)𝐹𝐶)) ↔ ∃𝑡 ∈ (1st ‘(𝐴𝐹𝐵))∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)))
7876, 77sylan 283 . . . . 5 (((𝐴P𝐵P) ∧ 𝐶P) → (𝑥 ∈ (1st ‘((𝐴𝐹𝐵)𝐹𝐶)) ↔ ∃𝑡 ∈ (1st ‘(𝐴𝐹𝐵))∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)))
79783impa 1197 . . . 4 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (1st ‘((𝐴𝐹𝐵)𝐹𝐶)) ↔ ∃𝑡 ∈ (1st ‘(𝐴𝐹𝐵))∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)))
8032caovcl 6108 . . . . . . . . . . . . . . . . . . 19 ((𝑓Q𝑔Q) → (𝑓𝐺𝑔) ∈ Q)
81 elisset 2787 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝐺𝑔) ∈ Q → ∃𝑡 𝑡 = (𝑓𝐺𝑔))
8280, 81syl 14 . . . . . . . . . . . . . . . . . 18 ((𝑓Q𝑔Q) → ∃𝑡 𝑡 = (𝑓𝐺𝑔))
8382biantrurd 305 . . . . . . . . . . . . . . . . 17 ((𝑓Q𝑔Q) → (∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ (∃𝑡 𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺))))
84 oveq1 5958 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = (𝑓𝐺𝑔) → (𝑡𝐺) = ((𝑓𝐺𝑔)𝐺))
8584eqeq2d 2218 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = (𝑓𝐺𝑔) → (𝑥 = (𝑡𝐺) ↔ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
8685rexbidv 2508 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = (𝑓𝐺𝑔) → (∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺) ↔ ∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
8786pm5.32i 454 . . . . . . . . . . . . . . . . . . 19 ((𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)) ↔ (𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
8887exbii 1629 . . . . . . . . . . . . . . . . . 18 (∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)) ↔ ∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
89 19.41v 1927 . . . . . . . . . . . . . . . . . 18 (∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝑡 𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
9088, 89bitri 184 . . . . . . . . . . . . . . . . 17 (∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)) ↔ (∃𝑡 𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
9183, 90bitr4di 198 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔Q) → (∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺))))
926, 91sylan2 286 . . . . . . . . . . . . . . 15 ((𝑓Q ∧ (𝐵P𝑔 ∈ (1st𝐵))) → (∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺))))
9392anassrs 400 . . . . . . . . . . . . . 14 (((𝑓Q𝐵P) ∧ 𝑔 ∈ (1st𝐵)) → (∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺))))
9493rexbidva 2504 . . . . . . . . . . . . 13 ((𝑓Q𝐵P) → (∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑔 ∈ (1st𝐵)∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺))))
95 rexcom4 2796 . . . . . . . . . . . . 13 (∃𝑔 ∈ (1st𝐵)∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)) ↔ ∃𝑡𝑔 ∈ (1st𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)))
9694, 95bitrdi 196 . . . . . . . . . . . 12 ((𝑓Q𝐵P) → (∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝑔 ∈ (1st𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺))))
9796ancoms 268 . . . . . . . . . . 11 ((𝐵P𝑓Q) → (∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝑔 ∈ (1st𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺))))
983, 97sylan2 286 . . . . . . . . . 10 ((𝐵P ∧ (𝐴P𝑓 ∈ (1st𝐴))) → (∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝑔 ∈ (1st𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺))))
9998anassrs 400 . . . . . . . . 9 (((𝐵P𝐴P) ∧ 𝑓 ∈ (1st𝐴)) → (∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝑔 ∈ (1st𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺))))
10099rexbidva 2504 . . . . . . . 8 ((𝐵P𝐴P) → (∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑡𝑔 ∈ (1st𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺))))
101 rexcom4 2796 . . . . . . . 8 (∃𝑓 ∈ (1st𝐴)∃𝑡𝑔 ∈ (1st𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)) ↔ ∃𝑡𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)))
102100, 101bitrdi 196 . . . . . . 7 ((𝐵P𝐴P) → (∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺))))
103 r19.41v 2663 . . . . . . . . . 10 (∃𝑔 ∈ (1st𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)) ↔ (∃𝑔 ∈ (1st𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)))
104103rexbii 2514 . . . . . . . . 9 (∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)) ↔ ∃𝑓 ∈ (1st𝐴)(∃𝑔 ∈ (1st𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)))
105 r19.41v 2663 . . . . . . . . 9 (∃𝑓 ∈ (1st𝐴)(∃𝑔 ∈ (1st𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)) ↔ (∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)))
106104, 105bitri 184 . . . . . . . 8 (∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)) ↔ (∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)))
107106exbii 1629 . . . . . . 7 (∃𝑡𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)(𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)) ↔ ∃𝑡(∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺)))
108102, 107bitrdi 196 . . . . . 6 ((𝐵P𝐴P) → (∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺))))
109108ancoms 268 . . . . 5 ((𝐴P𝐵P) → (∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺))))
1101093adant3 1020 . . . 4 ((𝐴P𝐵P𝐶P) → (∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)𝑡 = (𝑓𝐺𝑔) ∧ ∃ ∈ (1st𝐶)𝑥 = (𝑡𝐺))))
11175, 79, 1103bitr4d 220 . . 3 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (1st ‘((𝐴𝐹𝐵)𝐹𝐶)) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑔 ∈ (1st𝐵)∃ ∈ (1st𝐶)𝑥 = ((𝑓𝐺𝑔)𝐺)))
11264, 69, 1113bitr4rd 221 . 2 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (1st ‘((𝐴𝐹𝐵)𝐹𝐶)) ↔ 𝑥 ∈ (1st ‘(𝐴𝐹(𝐵𝐹𝐶)))))
113112eqrdv 2204 1 ((𝐴P𝐵P𝐶P) → (1st ‘((𝐴𝐹𝐵)𝐹𝐶)) = (1st ‘(𝐴𝐹(𝐵𝐹𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wex 1516  wcel 2177  wrex 2486  {crab 2489  cop 3637   × cxp 4677  dom cdm 4679  cfv 5276  (class class class)co 5951  cmpo 5953  1st c1st 6231  2nd c2nd 6232  Qcnq 7400  Pcnp 7411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-qs 6633  df-ni 7424  df-nqqs 7468  df-inp 7586
This theorem is referenced by:  genpassg  7646
  Copyright terms: Public domain W3C validator