| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anabss3 | GIF version | ||
| Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 1-Jan-2013.) |
| Ref | Expression |
|---|---|
| anabss3.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| anabss3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anabss3.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) | |
| 2 | 1 | anasss 399 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | anabsan2 584 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3anidm23 1308 expclzaplem 10655 |
| Copyright terms: Public domain | W3C validator |