![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anasss | GIF version |
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.) |
Ref | Expression |
---|---|
anasss.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
anasss | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anasss.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
2 | 1 | exp31 364 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: anass 401 anabss3 585 wepo 4360 wetrep 4361 fvun1 5583 f1elima 5774 caovimo 6068 supisoti 7009 prarloc 7502 reapmul1 8552 ltmul12a 8817 peano5uzti 9361 eluzp1m1 9551 lbzbi 9616 qreccl 9642 xrlttr 9795 xrltso 9796 elfzodifsumelfzo 10201 mertensabs 11545 ndvdsadd 11936 nn0seqcvgd 12041 isprm3 12118 ennnfonelemim 12425 grppropd 12893 neissex 13668 lgsval3 14422 |
Copyright terms: Public domain | W3C validator |