![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anasss | GIF version |
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.) |
Ref | Expression |
---|---|
anasss.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
anasss | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anasss.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
2 | 1 | exp31 364 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: anass 401 anabss3 585 wepo 4359 wetrep 4360 fvun1 5582 f1elima 5773 caovimo 6067 supisoti 7008 prarloc 7501 reapmul1 8551 ltmul12a 8816 peano5uzti 9360 eluzp1m1 9550 lbzbi 9615 qreccl 9641 xrlttr 9794 xrltso 9795 elfzodifsumelfzo 10200 mertensabs 11544 ndvdsadd 11935 nn0seqcvgd 12040 isprm3 12117 ennnfonelemim 12424 grppropd 12892 neissex 13635 lgsval3 14389 |
Copyright terms: Public domain | W3C validator |