Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anasss | GIF version |
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.) |
Ref | Expression |
---|---|
anasss.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
anasss | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anasss.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
2 | 1 | exp31 362 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp32 255 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: anass 399 anabss3 580 wepo 4342 wetrep 4343 fvun1 5560 f1elima 5749 caovimo 6043 supisoti 6983 prarloc 7452 reapmul1 8501 ltmul12a 8763 peano5uzti 9307 eluzp1m1 9497 lbzbi 9562 qreccl 9588 xrlttr 9739 xrltso 9740 elfzodifsumelfzo 10144 mertensabs 11487 ndvdsadd 11877 nn0seqcvgd 11982 isprm3 12059 ennnfonelemim 12366 grppropd 12711 neissex 12918 lgsval3 13672 |
Copyright terms: Public domain | W3C validator |