| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anasss | GIF version | ||
| Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| anasss.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| anasss | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anasss.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 2 | 1 | exp31 364 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: anass 401 anabss3 585 biadanid 614 wepo 4395 wetrep 4396 fvun1 5630 f1elima 5823 caovimo 6121 supisoti 7085 prarloc 7587 reapmul1 8639 ltmul12a 8904 peano5uzti 9451 eluzp1m1 9642 lbzbi 9707 qreccl 9733 xrlttr 9887 xrltso 9888 elfzodifsumelfzo 10294 mertensabs 11719 ndvdsadd 12113 nn0seqcvgd 12234 isprm3 12311 ennnfonelemim 12666 prdsval 12975 grppropd 13219 ghmcmn 13533 neissex 14485 lgsval3 15343 |
| Copyright terms: Public domain | W3C validator |