| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anasss | GIF version | ||
| Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| anasss.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| anasss | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anasss.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 2 | 1 | exp31 364 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: anass 401 anabss3 585 biadanid 616 wepo 4449 wetrep 4450 fvun1 5699 f1elima 5896 caovimo 6198 supisoti 7173 prarloc 7686 reapmul1 8738 ltmul12a 9003 peano5uzti 9551 eluzp1m1 9742 lbzbi 9807 qreccl 9833 xrlttr 9987 xrltso 9988 elfzodifsumelfzo 10402 mertensabs 12043 ndvdsadd 12437 nn0seqcvgd 12558 isprm3 12635 ennnfonelemim 12990 prdsval 13301 grppropd 13545 ghmcmn 13859 neissex 14833 lgsval3 15691 |
| Copyright terms: Public domain | W3C validator |