| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anasss | GIF version | ||
| Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| anasss.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| anasss | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anasss.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 2 | 1 | exp31 364 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: anass 401 anabss3 585 biadanid 614 wepo 4414 wetrep 4415 fvun1 5658 f1elima 5855 caovimo 6153 supisoti 7127 prarloc 7636 reapmul1 8688 ltmul12a 8953 peano5uzti 9501 eluzp1m1 9692 lbzbi 9757 qreccl 9783 xrlttr 9937 xrltso 9938 elfzodifsumelfzo 10352 mertensabs 11923 ndvdsadd 12317 nn0seqcvgd 12438 isprm3 12515 ennnfonelemim 12870 prdsval 13180 grppropd 13424 ghmcmn 13738 neissex 14712 lgsval3 15570 |
| Copyright terms: Public domain | W3C validator |