![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anasss | GIF version |
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.) |
Ref | Expression |
---|---|
anasss.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
anasss | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anasss.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
2 | 1 | exp31 364 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: anass 401 anabss3 585 biadanid 614 wepo 4391 wetrep 4392 fvun1 5624 f1elima 5817 caovimo 6114 supisoti 7071 prarloc 7565 reapmul1 8616 ltmul12a 8881 peano5uzti 9428 eluzp1m1 9619 lbzbi 9684 qreccl 9710 xrlttr 9864 xrltso 9865 elfzodifsumelfzo 10271 mertensabs 11683 ndvdsadd 12075 nn0seqcvgd 12182 isprm3 12259 ennnfonelemim 12584 grppropd 13092 ghmcmn 13400 neissex 14344 lgsval3 15175 |
Copyright terms: Public domain | W3C validator |