ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anasss GIF version

Theorem anasss 399
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.)
Hypothesis
Ref Expression
anasss.1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
anasss ((𝜑 ∧ (𝜓𝜒)) → 𝜃)

Proof of Theorem anasss
StepHypRef Expression
1 anasss.1 . . 3 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
21exp31 364 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32imp32 257 1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  anass  401  anabss3  585  biadanid  614  wepo  4395  wetrep  4396  fvun1  5630  f1elima  5823  caovimo  6121  supisoti  7085  prarloc  7589  reapmul1  8641  ltmul12a  8906  peano5uzti  9453  eluzp1m1  9644  lbzbi  9709  qreccl  9735  xrlttr  9889  xrltso  9890  elfzodifsumelfzo  10296  mertensabs  11721  ndvdsadd  12115  nn0seqcvgd  12236  isprm3  12313  ennnfonelemim  12668  prdsval  12977  grppropd  13221  ghmcmn  13535  neissex  14509  lgsval3  15367
  Copyright terms: Public domain W3C validator