ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anasss GIF version

Theorem anasss 397
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.)
Hypothesis
Ref Expression
anasss.1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
anasss ((𝜑 ∧ (𝜓𝜒)) → 𝜃)

Proof of Theorem anasss
StepHypRef Expression
1 anasss.1 . . 3 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
21exp31 362 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32imp32 255 1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  anass  399  anabss3  575  wepo  4337  wetrep  4338  fvun1  5552  f1elima  5741  caovimo  6035  supisoti  6975  prarloc  7444  reapmul1  8493  ltmul12a  8755  peano5uzti  9299  eluzp1m1  9489  lbzbi  9554  qreccl  9580  xrlttr  9731  xrltso  9732  elfzodifsumelfzo  10136  mertensabs  11478  ndvdsadd  11868  nn0seqcvgd  11973  isprm3  12050  ennnfonelemim  12357  neissex  12805  lgsval3  13559
  Copyright terms: Public domain W3C validator