Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anasss | GIF version |
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.) |
Ref | Expression |
---|---|
anasss.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
anasss | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anasss.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
2 | 1 | exp31 362 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp32 255 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: anass 399 anabss3 575 wepo 4337 wetrep 4338 fvun1 5552 f1elima 5741 caovimo 6035 supisoti 6975 prarloc 7444 reapmul1 8493 ltmul12a 8755 peano5uzti 9299 eluzp1m1 9489 lbzbi 9554 qreccl 9580 xrlttr 9731 xrltso 9732 elfzodifsumelfzo 10136 mertensabs 11478 ndvdsadd 11868 nn0seqcvgd 11973 isprm3 12050 ennnfonelemim 12357 neissex 12805 lgsval3 13559 |
Copyright terms: Public domain | W3C validator |