| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anasss | GIF version | ||
| Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| anasss.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| anasss | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anasss.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 2 | 1 | exp31 364 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: anass 401 anabss3 585 biadanid 614 wepo 4395 wetrep 4396 fvun1 5630 f1elima 5823 caovimo 6121 supisoti 7085 prarloc 7589 reapmul1 8641 ltmul12a 8906 peano5uzti 9453 eluzp1m1 9644 lbzbi 9709 qreccl 9735 xrlttr 9889 xrltso 9890 elfzodifsumelfzo 10296 mertensabs 11721 ndvdsadd 12115 nn0seqcvgd 12236 isprm3 12313 ennnfonelemim 12668 prdsval 12977 grppropd 13221 ghmcmn 13535 neissex 14509 lgsval3 15367 |
| Copyright terms: Public domain | W3C validator |