ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anidm23 GIF version

Theorem 3anidm23 1331
Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.)
Hypothesis
Ref Expression
3anidm23.1 ((𝜑𝜓𝜓) → 𝜒)
Assertion
Ref Expression
3anidm23 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm23
StepHypRef Expression
1 3anidm23.1 . . 3 ((𝜑𝜓𝜓) → 𝜒)
213expa 1227 . 2 (((𝜑𝜓) ∧ 𝜓) → 𝜒)
32anabss3 585 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  efrirr  4444  subeq0  8372  halfaddsub  9345  avglt2  9351  efsub  12192  sinmul  12255  pythagtriplem4  12791  pythagtriplem16  12802  xmet0  15037
  Copyright terms: Public domain W3C validator