| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anidm23 | GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
| Ref | Expression |
|---|---|
| 3anidm23.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| 3anidm23 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm23.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | 3expa 1205 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) |
| 3 | 2 | anabss3 585 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: efrirr 4388 subeq0 8252 halfaddsub 9225 avglt2 9231 efsub 11846 sinmul 11909 pythagtriplem4 12437 pythagtriplem16 12448 xmet0 14599 |
| Copyright terms: Public domain | W3C validator |