![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expclzaplem | GIF version |
Description: Closure law for integer exponentiation. Lemma for expclzap 10638 and expap0i 10645. (Contributed by Jim Kingdon, 9-Jun-2020.) |
Ref | Expression |
---|---|
expclzaplem | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4033 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 # 0 ↔ 𝐴 # 0)) | |
2 | 1 | elrab 2917 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝐴 ∈ ℂ ∧ 𝐴 # 0)) |
3 | ssrab2 3265 | . . . . . 6 ⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ⊆ ℂ | |
4 | breq1 4033 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0)) | |
5 | 4 | elrab 2917 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0)) |
6 | breq1 4033 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (𝑧 # 0 ↔ 𝑦 # 0)) | |
7 | 6 | elrab 2917 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) |
8 | mulcl 8001 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
9 | 8 | ad2ant2r 509 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) ∈ ℂ) |
10 | mulap0 8675 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) # 0) | |
11 | breq1 4033 | . . . . . . . . 9 ⊢ (𝑧 = (𝑥 · 𝑦) → (𝑧 # 0 ↔ (𝑥 · 𝑦) # 0)) | |
12 | 11 | elrab 2917 | . . . . . . . 8 ⊢ ((𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) # 0)) |
13 | 9, 10, 12 | sylanbrc 417 | . . . . . . 7 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
14 | 5, 7, 13 | syl2anb 291 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝑦 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
15 | ax-1cn 7967 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
16 | 1ap0 8611 | . . . . . . 7 ⊢ 1 # 0 | |
17 | breq1 4033 | . . . . . . . 8 ⊢ (𝑧 = 1 → (𝑧 # 0 ↔ 1 # 0)) | |
18 | 17 | elrab 2917 | . . . . . . 7 ⊢ (1 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (1 ∈ ℂ ∧ 1 # 0)) |
19 | 15, 16, 18 | mpbir2an 944 | . . . . . 6 ⊢ 1 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} |
20 | recclap 8700 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (1 / 𝑥) ∈ ℂ) | |
21 | recap0 8706 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (1 / 𝑥) # 0) | |
22 | 20, 21 | jca 306 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) # 0)) |
23 | breq1 4033 | . . . . . . . . 9 ⊢ (𝑧 = (1 / 𝑥) → (𝑧 # 0 ↔ (1 / 𝑥) # 0)) | |
24 | 23 | elrab 2917 | . . . . . . . 8 ⊢ ((1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) # 0)) |
25 | 22, 5, 24 | 3imtr4i 201 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} → (1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
26 | 25 | adantr 276 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
27 | 3, 14, 19, 26 | expcl2lemap 10625 | . . . . 5 ⊢ ((𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
28 | 27 | 3expia 1207 | . . . 4 ⊢ ((𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})) |
29 | 2, 28 | sylanbr 285 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})) |
30 | 29 | anabss3 585 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})) |
31 | 30 | 3impia 1202 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2164 {crab 2476 class class class wbr 4030 (class class class)co 5919 ℂcc 7872 0cc0 7874 1c1 7875 · cmul 7879 # cap 8602 / cdiv 8693 ℤcz 9320 ↑cexp 10612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-seqfrec 10522 df-exp 10613 |
This theorem is referenced by: expclzap 10638 expap0i 10645 expghmap 14106 lgsne0 15195 |
Copyright terms: Public domain | W3C validator |