![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expclzaplem | GIF version |
Description: Closure law for integer exponentiation. Lemma for expclzap 9815 and expap0i 9822. (Contributed by Jim Kingdon, 9-Jun-2020.) |
Ref | Expression |
---|---|
expclzaplem | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3814 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 # 0 ↔ 𝐴 # 0)) | |
2 | 1 | elrab 2759 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝐴 ∈ ℂ ∧ 𝐴 # 0)) |
3 | ssrab2 3090 | . . . . . 6 ⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ⊆ ℂ | |
4 | breq1 3814 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0)) | |
5 | 4 | elrab 2759 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0)) |
6 | breq1 3814 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (𝑧 # 0 ↔ 𝑦 # 0)) | |
7 | 6 | elrab 2759 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) |
8 | mulcl 7370 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
9 | 8 | ad2ant2r 493 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) ∈ ℂ) |
10 | mulap0 8019 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) # 0) | |
11 | breq1 3814 | . . . . . . . . 9 ⊢ (𝑧 = (𝑥 · 𝑦) → (𝑧 # 0 ↔ (𝑥 · 𝑦) # 0)) | |
12 | 11 | elrab 2759 | . . . . . . . 8 ⊢ ((𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) # 0)) |
13 | 9, 10, 12 | sylanbrc 408 | . . . . . . 7 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
14 | 5, 7, 13 | syl2anb 285 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝑦 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
15 | ax-1cn 7339 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
16 | 1ap0 7965 | . . . . . . 7 ⊢ 1 # 0 | |
17 | breq1 3814 | . . . . . . . 8 ⊢ (𝑧 = 1 → (𝑧 # 0 ↔ 1 # 0)) | |
18 | 17 | elrab 2759 | . . . . . . 7 ⊢ (1 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (1 ∈ ℂ ∧ 1 # 0)) |
19 | 15, 16, 18 | mpbir2an 884 | . . . . . 6 ⊢ 1 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} |
20 | recclap 8042 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (1 / 𝑥) ∈ ℂ) | |
21 | recap0 8048 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (1 / 𝑥) # 0) | |
22 | 20, 21 | jca 300 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) # 0)) |
23 | breq1 3814 | . . . . . . . . 9 ⊢ (𝑧 = (1 / 𝑥) → (𝑧 # 0 ↔ (1 / 𝑥) # 0)) | |
24 | 23 | elrab 2759 | . . . . . . . 8 ⊢ ((1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) # 0)) |
25 | 22, 5, 24 | 3imtr4i 199 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} → (1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
26 | 25 | adantr 270 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
27 | 3, 14, 19, 26 | expcl2lemap 9802 | . . . . 5 ⊢ ((𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
28 | 27 | 3expia 1141 | . . . 4 ⊢ ((𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})) |
29 | 2, 28 | sylanbr 279 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})) |
30 | 29 | anabss3 550 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})) |
31 | 30 | 3impia 1136 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 920 ∈ wcel 1434 {crab 2357 class class class wbr 3811 (class class class)co 5589 ℂcc 7249 0cc0 7251 1c1 7252 · cmul 7256 # cap 7956 / cdiv 8035 ℤcz 8644 ↑cexp 9789 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-nul 3930 ax-pow 3974 ax-pr 3999 ax-un 4223 ax-setind 4315 ax-iinf 4365 ax-cnex 7337 ax-resscn 7338 ax-1cn 7339 ax-1re 7340 ax-icn 7341 ax-addcl 7342 ax-addrcl 7343 ax-mulcl 7344 ax-mulrcl 7345 ax-addcom 7346 ax-mulcom 7347 ax-addass 7348 ax-mulass 7349 ax-distr 7350 ax-i2m1 7351 ax-0lt1 7352 ax-1rid 7353 ax-0id 7354 ax-rnegex 7355 ax-precex 7356 ax-cnre 7357 ax-pre-ltirr 7358 ax-pre-ltwlin 7359 ax-pre-lttrn 7360 ax-pre-apti 7361 ax-pre-ltadd 7362 ax-pre-mulgt0 7363 ax-pre-mulext 7364 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-nul 3270 df-if 3374 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-tr 3902 df-id 4083 df-po 4086 df-iso 4087 df-iord 4156 df-on 4158 df-ilim 4159 df-suc 4161 df-iom 4368 df-xp 4405 df-rel 4406 df-cnv 4407 df-co 4408 df-dm 4409 df-rn 4410 df-res 4411 df-ima 4412 df-iota 4932 df-fun 4969 df-fn 4970 df-f 4971 df-f1 4972 df-fo 4973 df-f1o 4974 df-fv 4975 df-riota 5545 df-ov 5592 df-oprab 5593 df-mpt2 5594 df-1st 5844 df-2nd 5845 df-recs 6000 df-frec 6086 df-pnf 7425 df-mnf 7426 df-xr 7427 df-ltxr 7428 df-le 7429 df-sub 7556 df-neg 7557 df-reap 7950 df-ap 7957 df-div 8036 df-inn 8315 df-n0 8564 df-z 8645 df-uz 8913 df-iseq 9739 df-iexp 9790 |
This theorem is referenced by: expclzap 9815 expap0i 9822 |
Copyright terms: Public domain | W3C validator |