ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expclzaplem GIF version

Theorem expclzaplem 10608
Description: Closure law for integer exponentiation. Lemma for expclzap 10609 and expap0i 10616. (Contributed by Jim Kingdon, 9-Jun-2020.)
Assertion
Ref Expression
expclzaplem ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
Distinct variable groups:   𝑧,𝐴   𝑧,𝑁

Proof of Theorem expclzaplem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4028 . . . . 5 (𝑧 = 𝐴 → (𝑧 # 0 ↔ 𝐴 # 0))
21elrab 2912 . . . 4 (𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝐴 ∈ ℂ ∧ 𝐴 # 0))
3 ssrab2 3260 . . . . . 6 {𝑧 ∈ ℂ ∣ 𝑧 # 0} ⊆ ℂ
4 breq1 4028 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0))
54elrab 2912 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0))
6 breq1 4028 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧 # 0 ↔ 𝑦 # 0))
76elrab 2912 . . . . . . 7 (𝑦 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑦 ∈ ℂ ∧ 𝑦 # 0))
8 mulcl 7985 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
98ad2ant2r 509 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) ∈ ℂ)
10 mulap0 8659 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) # 0)
11 breq1 4028 . . . . . . . . 9 (𝑧 = (𝑥 · 𝑦) → (𝑧 # 0 ↔ (𝑥 · 𝑦) # 0))
1211elrab 2912 . . . . . . . 8 ((𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) # 0))
139, 10, 12sylanbrc 417 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
145, 7, 13syl2anb 291 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝑦 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
15 ax-1cn 7951 . . . . . . 7 1 ∈ ℂ
16 1ap0 8595 . . . . . . 7 1 # 0
17 breq1 4028 . . . . . . . 8 (𝑧 = 1 → (𝑧 # 0 ↔ 1 # 0))
1817elrab 2912 . . . . . . 7 (1 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (1 ∈ ℂ ∧ 1 # 0))
1915, 16, 18mpbir2an 944 . . . . . 6 1 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}
20 recclap 8684 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (1 / 𝑥) ∈ ℂ)
21 recap0 8690 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (1 / 𝑥) # 0)
2220, 21jca 306 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) # 0))
23 breq1 4028 . . . . . . . . 9 (𝑧 = (1 / 𝑥) → (𝑧 # 0 ↔ (1 / 𝑥) # 0))
2423elrab 2912 . . . . . . . 8 ((1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) # 0))
2522, 5, 243imtr4i 201 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} → (1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
2625adantr 276 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
273, 14, 19, 26expcl2lemap 10596 . . . . 5 ((𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
28273expia 1207 . . . 4 ((𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}))
292, 28sylanbr 285 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}))
3029anabss3 585 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}))
31303impia 1202 1 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2160  {crab 2472   class class class wbr 4025  (class class class)co 5906  cc 7856  0cc0 7858  1c1 7859   · cmul 7863   # cap 8586   / cdiv 8677  cz 9303  cexp 10583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4140  ax-sep 4143  ax-nul 4151  ax-pow 4199  ax-pr 4234  ax-un 4458  ax-setind 4561  ax-iinf 4612  ax-cnex 7949  ax-resscn 7950  ax-1cn 7951  ax-1re 7952  ax-icn 7953  ax-addcl 7954  ax-addrcl 7955  ax-mulcl 7956  ax-mulrcl 7957  ax-addcom 7958  ax-mulcom 7959  ax-addass 7960  ax-mulass 7961  ax-distr 7962  ax-i2m1 7963  ax-0lt1 7964  ax-1rid 7965  ax-0id 7966  ax-rnegex 7967  ax-precex 7968  ax-cnre 7969  ax-pre-ltirr 7970  ax-pre-ltwlin 7971  ax-pre-lttrn 7972  ax-pre-apti 7973  ax-pre-ltadd 7974  ax-pre-mulgt0 7975  ax-pre-mulext 7976
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2758  df-sbc 2982  df-csb 3077  df-dif 3151  df-un 3153  df-in 3155  df-ss 3162  df-nul 3443  df-if 3554  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3832  df-int 3867  df-iun 3910  df-br 4026  df-opab 4087  df-mpt 4088  df-tr 4124  df-id 4318  df-po 4321  df-iso 4322  df-iord 4391  df-on 4393  df-ilim 4394  df-suc 4396  df-iom 4615  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-rn 4662  df-res 4663  df-ima 4664  df-iota 5203  df-fun 5244  df-fn 5245  df-f 5246  df-f1 5247  df-fo 5248  df-f1o 5249  df-fv 5250  df-riota 5861  df-ov 5909  df-oprab 5910  df-mpo 5911  df-1st 6180  df-2nd 6181  df-recs 6345  df-frec 6431  df-pnf 8042  df-mnf 8043  df-xr 8044  df-ltxr 8045  df-le 8046  df-sub 8178  df-neg 8179  df-reap 8580  df-ap 8587  df-div 8678  df-inn 8969  df-n0 9227  df-z 9304  df-uz 9579  df-seqfrec 10505  df-exp 10584
This theorem is referenced by:  expclzap  10609  expap0i  10616  lgsne0  15082
  Copyright terms: Public domain W3C validator