ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expclzaplem GIF version

Theorem expclzaplem 10094
Description: Closure law for integer exponentiation. Lemma for expclzap 10095 and expap0i 10102. (Contributed by Jim Kingdon, 9-Jun-2020.)
Assertion
Ref Expression
expclzaplem ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
Distinct variable groups:   𝑧,𝐴   𝑧,𝑁

Proof of Theorem expclzaplem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3870 . . . . 5 (𝑧 = 𝐴 → (𝑧 # 0 ↔ 𝐴 # 0))
21elrab 2785 . . . 4 (𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝐴 ∈ ℂ ∧ 𝐴 # 0))
3 ssrab2 3121 . . . . . 6 {𝑧 ∈ ℂ ∣ 𝑧 # 0} ⊆ ℂ
4 breq1 3870 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0))
54elrab 2785 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0))
6 breq1 3870 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧 # 0 ↔ 𝑦 # 0))
76elrab 2785 . . . . . . 7 (𝑦 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑦 ∈ ℂ ∧ 𝑦 # 0))
8 mulcl 7566 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
98ad2ant2r 494 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) ∈ ℂ)
10 mulap0 8220 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) # 0)
11 breq1 3870 . . . . . . . . 9 (𝑧 = (𝑥 · 𝑦) → (𝑧 # 0 ↔ (𝑥 · 𝑦) # 0))
1211elrab 2785 . . . . . . . 8 ((𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) # 0))
139, 10, 12sylanbrc 409 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
145, 7, 13syl2anb 286 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝑦 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
15 ax-1cn 7535 . . . . . . 7 1 ∈ ℂ
16 1ap0 8164 . . . . . . 7 1 # 0
17 breq1 3870 . . . . . . . 8 (𝑧 = 1 → (𝑧 # 0 ↔ 1 # 0))
1817elrab 2785 . . . . . . 7 (1 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (1 ∈ ℂ ∧ 1 # 0))
1915, 16, 18mpbir2an 891 . . . . . 6 1 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}
20 recclap 8243 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (1 / 𝑥) ∈ ℂ)
21 recap0 8249 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (1 / 𝑥) # 0)
2220, 21jca 301 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) # 0))
23 breq1 3870 . . . . . . . . 9 (𝑧 = (1 / 𝑥) → (𝑧 # 0 ↔ (1 / 𝑥) # 0))
2423elrab 2785 . . . . . . . 8 ((1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) # 0))
2522, 5, 243imtr4i 200 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} → (1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
2625adantr 271 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
273, 14, 19, 26expcl2lemap 10082 . . . . 5 ((𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
28273expia 1148 . . . 4 ((𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}))
292, 28sylanbr 280 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}))
3029anabss3 553 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}))
31303impia 1143 1 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 927  wcel 1445  {crab 2374   class class class wbr 3867  (class class class)co 5690  cc 7445  0cc0 7447  1c1 7448   · cmul 7452   # cap 8155   / cdiv 8236  cz 8848  cexp 10069
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-frec 6194  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-n0 8772  df-z 8849  df-uz 9119  df-seqfrec 10001  df-exp 10070
This theorem is referenced by:  expclzap  10095  expap0i  10102
  Copyright terms: Public domain W3C validator