![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expclzaplem | GIF version |
Description: Closure law for integer exponentiation. Lemma for expclzap 10609 and expap0i 10616. (Contributed by Jim Kingdon, 9-Jun-2020.) |
Ref | Expression |
---|---|
expclzaplem | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4028 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 # 0 ↔ 𝐴 # 0)) | |
2 | 1 | elrab 2912 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝐴 ∈ ℂ ∧ 𝐴 # 0)) |
3 | ssrab2 3260 | . . . . . 6 ⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ⊆ ℂ | |
4 | breq1 4028 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0)) | |
5 | 4 | elrab 2912 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0)) |
6 | breq1 4028 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (𝑧 # 0 ↔ 𝑦 # 0)) | |
7 | 6 | elrab 2912 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) |
8 | mulcl 7985 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
9 | 8 | ad2ant2r 509 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) ∈ ℂ) |
10 | mulap0 8659 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) # 0) | |
11 | breq1 4028 | . . . . . . . . 9 ⊢ (𝑧 = (𝑥 · 𝑦) → (𝑧 # 0 ↔ (𝑥 · 𝑦) # 0)) | |
12 | 11 | elrab 2912 | . . . . . . . 8 ⊢ ((𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) # 0)) |
13 | 9, 10, 12 | sylanbrc 417 | . . . . . . 7 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
14 | 5, 7, 13 | syl2anb 291 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝑦 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
15 | ax-1cn 7951 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
16 | 1ap0 8595 | . . . . . . 7 ⊢ 1 # 0 | |
17 | breq1 4028 | . . . . . . . 8 ⊢ (𝑧 = 1 → (𝑧 # 0 ↔ 1 # 0)) | |
18 | 17 | elrab 2912 | . . . . . . 7 ⊢ (1 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (1 ∈ ℂ ∧ 1 # 0)) |
19 | 15, 16, 18 | mpbir2an 944 | . . . . . 6 ⊢ 1 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} |
20 | recclap 8684 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (1 / 𝑥) ∈ ℂ) | |
21 | recap0 8690 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (1 / 𝑥) # 0) | |
22 | 20, 21 | jca 306 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) # 0)) |
23 | breq1 4028 | . . . . . . . . 9 ⊢ (𝑧 = (1 / 𝑥) → (𝑧 # 0 ↔ (1 / 𝑥) # 0)) | |
24 | 23 | elrab 2912 | . . . . . . . 8 ⊢ ((1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) # 0)) |
25 | 22, 5, 24 | 3imtr4i 201 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} → (1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
26 | 25 | adantr 276 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
27 | 3, 14, 19, 26 | expcl2lemap 10596 | . . . . 5 ⊢ ((𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
28 | 27 | 3expia 1207 | . . . 4 ⊢ ((𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})) |
29 | 2, 28 | sylanbr 285 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})) |
30 | 29 | anabss3 585 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})) |
31 | 30 | 3impia 1202 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2160 {crab 2472 class class class wbr 4025 (class class class)co 5906 ℂcc 7856 0cc0 7858 1c1 7859 · cmul 7863 # cap 8586 / cdiv 8677 ℤcz 9303 ↑cexp 10583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4140 ax-sep 4143 ax-nul 4151 ax-pow 4199 ax-pr 4234 ax-un 4458 ax-setind 4561 ax-iinf 4612 ax-cnex 7949 ax-resscn 7950 ax-1cn 7951 ax-1re 7952 ax-icn 7953 ax-addcl 7954 ax-addrcl 7955 ax-mulcl 7956 ax-mulrcl 7957 ax-addcom 7958 ax-mulcom 7959 ax-addass 7960 ax-mulass 7961 ax-distr 7962 ax-i2m1 7963 ax-0lt1 7964 ax-1rid 7965 ax-0id 7966 ax-rnegex 7967 ax-precex 7968 ax-cnre 7969 ax-pre-ltirr 7970 ax-pre-ltwlin 7971 ax-pre-lttrn 7972 ax-pre-apti 7973 ax-pre-ltadd 7974 ax-pre-mulgt0 7975 ax-pre-mulext 7976 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2758 df-sbc 2982 df-csb 3077 df-dif 3151 df-un 3153 df-in 3155 df-ss 3162 df-nul 3443 df-if 3554 df-pw 3599 df-sn 3620 df-pr 3621 df-op 3623 df-uni 3832 df-int 3867 df-iun 3910 df-br 4026 df-opab 4087 df-mpt 4088 df-tr 4124 df-id 4318 df-po 4321 df-iso 4322 df-iord 4391 df-on 4393 df-ilim 4394 df-suc 4396 df-iom 4615 df-xp 4657 df-rel 4658 df-cnv 4659 df-co 4660 df-dm 4661 df-rn 4662 df-res 4663 df-ima 4664 df-iota 5203 df-fun 5244 df-fn 5245 df-f 5246 df-f1 5247 df-fo 5248 df-f1o 5249 df-fv 5250 df-riota 5861 df-ov 5909 df-oprab 5910 df-mpo 5911 df-1st 6180 df-2nd 6181 df-recs 6345 df-frec 6431 df-pnf 8042 df-mnf 8043 df-xr 8044 df-ltxr 8045 df-le 8046 df-sub 8178 df-neg 8179 df-reap 8580 df-ap 8587 df-div 8678 df-inn 8969 df-n0 9227 df-z 9304 df-uz 9579 df-seqfrec 10505 df-exp 10584 |
This theorem is referenced by: expclzap 10609 expap0i 10616 lgsne0 15082 |
Copyright terms: Public domain | W3C validator |