![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expclzaplem | GIF version |
Description: Closure law for integer exponentiation. Lemma for expclzap 10095 and expap0i 10102. (Contributed by Jim Kingdon, 9-Jun-2020.) |
Ref | Expression |
---|---|
expclzaplem | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3870 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 # 0 ↔ 𝐴 # 0)) | |
2 | 1 | elrab 2785 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝐴 ∈ ℂ ∧ 𝐴 # 0)) |
3 | ssrab2 3121 | . . . . . 6 ⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ⊆ ℂ | |
4 | breq1 3870 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0)) | |
5 | 4 | elrab 2785 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0)) |
6 | breq1 3870 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (𝑧 # 0 ↔ 𝑦 # 0)) | |
7 | 6 | elrab 2785 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) |
8 | mulcl 7566 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
9 | 8 | ad2ant2r 494 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) ∈ ℂ) |
10 | mulap0 8220 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) # 0) | |
11 | breq1 3870 | . . . . . . . . 9 ⊢ (𝑧 = (𝑥 · 𝑦) → (𝑧 # 0 ↔ (𝑥 · 𝑦) # 0)) | |
12 | 11 | elrab 2785 | . . . . . . . 8 ⊢ ((𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) # 0)) |
13 | 9, 10, 12 | sylanbrc 409 | . . . . . . 7 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
14 | 5, 7, 13 | syl2anb 286 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝑦 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
15 | ax-1cn 7535 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
16 | 1ap0 8164 | . . . . . . 7 ⊢ 1 # 0 | |
17 | breq1 3870 | . . . . . . . 8 ⊢ (𝑧 = 1 → (𝑧 # 0 ↔ 1 # 0)) | |
18 | 17 | elrab 2785 | . . . . . . 7 ⊢ (1 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ (1 ∈ ℂ ∧ 1 # 0)) |
19 | 15, 16, 18 | mpbir2an 891 | . . . . . 6 ⊢ 1 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} |
20 | recclap 8243 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (1 / 𝑥) ∈ ℂ) | |
21 | recap0 8249 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (1 / 𝑥) # 0) | |
22 | 20, 21 | jca 301 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) # 0)) |
23 | breq1 3870 | . . . . . . . . 9 ⊢ (𝑧 = (1 / 𝑥) → (𝑧 # 0 ↔ (1 / 𝑥) # 0)) | |
24 | 23 | elrab 2785 | . . . . . . . 8 ⊢ ((1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ↔ ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) # 0)) |
25 | 22, 5, 24 | 3imtr4i 200 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} → (1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
26 | 25 | adantr 271 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
27 | 3, 14, 19, 26 | expcl2lemap 10082 | . . . . 5 ⊢ ((𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
28 | 27 | 3expia 1148 | . . . 4 ⊢ ((𝐴 ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})) |
29 | 2, 28 | sylanbr 280 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})) |
30 | 29 | anabss3 553 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})) |
31 | 30 | 3impia 1143 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 927 ∈ wcel 1445 {crab 2374 class class class wbr 3867 (class class class)co 5690 ℂcc 7445 0cc0 7447 1c1 7448 · cmul 7452 # cap 8155 / cdiv 8236 ℤcz 8848 ↑cexp 10069 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-iinf 4431 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-mulrcl 7541 ax-addcom 7542 ax-mulcom 7543 ax-addass 7544 ax-mulass 7545 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-1rid 7549 ax-0id 7550 ax-rnegex 7551 ax-precex 7552 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-apti 7557 ax-pre-ltadd 7558 ax-pre-mulgt0 7559 ax-pre-mulext 7560 |
This theorem depends on definitions: df-bi 116 df-dc 784 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rmo 2378 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-if 3414 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-tr 3959 df-id 4144 df-po 4147 df-iso 4148 df-iord 4217 df-on 4219 df-ilim 4220 df-suc 4222 df-iom 4434 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-1st 5949 df-2nd 5950 df-recs 6108 df-frec 6194 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-reap 8149 df-ap 8156 df-div 8237 df-inn 8521 df-n0 8772 df-z 8849 df-uz 9119 df-seqfrec 10001 df-exp 10070 |
This theorem is referenced by: expclzap 10095 expap0i 10102 |
Copyright terms: Public domain | W3C validator |