| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > anabsan2 | GIF version | ||
| Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.) (Revised by NM, 1-Jan-2013.) | 
| Ref | Expression | 
|---|---|
| anabsan2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) | 
| Ref | Expression | 
|---|---|
| anabsan2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anabsan2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) | |
| 2 | 1 | an12s 565 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) → 𝜒) | 
| 3 | 2 | anabss7 583 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: anabss3 585 anandirs 593 lmodvsdi 13867 lmodvsdir 13868 lmodvsass 13869 lss0cl 13925 | 
| Copyright terms: Public domain | W3C validator |