ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anbi12ci GIF version

Theorem anbi12ci 461
Description: Variant of anbi12i 460 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
anbi12.1 (𝜑𝜓)
anbi12.2 (𝜒𝜃)
Assertion
Ref Expression
anbi12ci ((𝜑𝜒) ↔ (𝜃𝜓))

Proof of Theorem anbi12ci
StepHypRef Expression
1 anbi12.1 . . 3 (𝜑𝜓)
2 anbi12.2 . . 3 (𝜒𝜃)
31, 2anbi12i 460 . 2 ((𝜑𝜒) ↔ (𝜓𝜃))
4 ancom 266 . 2 ((𝜓𝜃) ↔ (𝜃𝜓))
53, 4bitri 184 1 ((𝜑𝜒) ↔ (𝜃𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  opelopabsbALT  4259  cnvpom  5171  f1cnvcnv  5432
  Copyright terms: Public domain W3C validator