| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi12i | GIF version | ||
| Description: Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
| anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| anbi12i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | anbi1i 458 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| 3 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 4 | 3 | anbi2i 457 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi12ci 461 ordir 818 orddi 821 3anbi123i 1190 an6 1333 xorcom 1407 trubifal 1435 truxortru 1438 truxorfal 1439 falxortru 1440 falxorfal 1441 nford 1589 nfand 1590 sbequ8 1869 sbanv 1912 sban 1982 sbbi 1986 sbnf2 2008 eu1 2078 2exeu 2145 2eu4 2146 sbabel 2374 neanior 2462 rexeqbii 2518 r19.26m 2636 reean 2674 reu5 2722 reu2 2960 reu3 2962 eqss 3207 unss 3346 ralunb 3353 ssin 3394 undi 3420 difundi 3424 indifdir 3428 inab 3440 difab 3441 reuss2 3452 reupick 3456 raaan 3565 prss 3788 tpss 3798 prsspw 3805 prneimg 3814 uniin 3869 intun 3915 intpr 3916 disjiun 4038 brin 4095 brdif 4096 ssext 4264 pweqb 4266 opthg2 4282 copsex4g 4290 opelopabsb 4305 eqopab2b 4325 pwin 4328 pofun 4358 wetrep 4406 ordwe 4623 wessep 4625 reg3exmidlemwe 4626 elxp3 4728 soinxp 4744 relun 4791 inopab 4809 difopab 4810 inxp 4811 opelco2g 4845 cnvco 4862 dmin 4885 restidsing 5014 intasym 5066 asymref 5067 cnvdif 5088 xpm 5103 xp11m 5120 dfco2 5181 relssdmrn 5202 cnvpom 5224 xpcom 5228 dffun4 5281 dffun4f 5286 funun 5314 funcnveq 5336 fun11 5340 fununi 5341 imadif 5353 imainlem 5354 imain 5355 fnres 5391 fnopabg 5398 fun 5447 fin 5461 dff1o2 5526 brprcneu 5568 fsn 5751 dff1o6 5844 isotr 5884 brabvv 5990 eqoprab2b 6002 fvmpopr2d 6081 dfoprab3 6276 poxp 6317 cnvoprab 6319 f1od2 6320 brtpos2 6336 tfrlem7 6402 dfer2 6620 eqer 6651 iinerm 6693 brecop 6711 eroveu 6712 erovlem 6713 oviec 6727 mapval2 6764 ixpin 6809 xpcomco 6920 xpassen 6924 ssenen 6947 sbthlemi10 7067 infmoti 7129 dfmq0qs 7541 dfplq0qs 7542 enq0enq 7543 enq0tr 7546 npsspw 7583 nqprdisj 7656 ltnqpr 7705 ltnqpri 7706 ltexprlemdisj 7718 addcanprg 7728 recexprlemdisj 7742 caucvgprprlemval 7800 addsrpr 7857 mulsrpr 7858 mulgt0sr 7890 addcnsr 7946 mulcnsr 7947 ltresr 7951 addvalex 7956 axcnre 7993 axpre-suploc 8014 supinfneg 9715 infsupneg 9716 xrnemnf 9898 xrnepnf 9899 elfzuzb 10140 fzass4 10183 infssuzex 10374 hashfacen 10979 rexanre 11502 cbvprod 11840 nnwosdc 12331 isprm3 12411 issubm 13275 issubmd 13277 0subm 13287 insubm 13288 isnsg2 13510 lss1d 14116 tgval2 14494 epttop 14533 cnnei 14675 txuni2 14699 txbas 14701 txdis1cn 14721 xmeterval 14878 dedekindicc 15076 plyun0 15179 lgslem3 15450 bj-stan 15645 nnti 15891 |
| Copyright terms: Public domain | W3C validator |