| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi12i | GIF version | ||
| Description: Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
| anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| anbi12i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | anbi1i 458 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| 3 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 4 | 3 | anbi2i 457 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi12ci 461 ordir 818 orddi 821 3anbi123i 1190 an6 1332 xorcom 1399 trubifal 1427 truxortru 1430 truxorfal 1431 falxortru 1432 falxorfal 1433 nford 1581 nfand 1582 sbequ8 1861 sbanv 1904 sban 1974 sbbi 1978 sbnf2 2000 eu1 2070 2exeu 2137 2eu4 2138 sbabel 2366 neanior 2454 rexeqbii 2510 r19.26m 2628 reean 2666 reu5 2714 reu2 2952 reu3 2954 eqss 3198 unss 3337 ralunb 3344 ssin 3385 undi 3411 difundi 3415 indifdir 3419 inab 3431 difab 3432 reuss2 3443 reupick 3447 raaan 3556 prss 3778 tpss 3788 prsspw 3795 prneimg 3804 uniin 3859 intun 3905 intpr 3906 disjiun 4028 brin 4085 brdif 4086 ssext 4254 pweqb 4256 opthg2 4272 copsex4g 4280 opelopabsb 4294 eqopab2b 4314 pwin 4317 pofun 4347 wetrep 4395 ordwe 4612 wessep 4614 reg3exmidlemwe 4615 elxp3 4717 soinxp 4733 relun 4780 inopab 4798 difopab 4799 inxp 4800 opelco2g 4834 cnvco 4851 dmin 4874 restidsing 5002 intasym 5054 asymref 5055 cnvdif 5076 xpm 5091 xp11m 5108 dfco2 5169 relssdmrn 5190 cnvpom 5212 xpcom 5216 dffun4 5269 dffun4f 5274 funun 5302 funcnveq 5321 fun11 5325 fununi 5326 imadif 5338 imainlem 5339 imain 5340 fnres 5374 fnopabg 5381 fun 5430 fin 5444 dff1o2 5509 brprcneu 5551 fsn 5734 dff1o6 5823 isotr 5863 brabvv 5968 eqoprab2b 5980 fvmpopr2d 6059 dfoprab3 6249 poxp 6290 cnvoprab 6292 f1od2 6293 brtpos2 6309 tfrlem7 6375 dfer2 6593 eqer 6624 iinerm 6666 brecop 6684 eroveu 6685 erovlem 6686 oviec 6700 mapval2 6737 ixpin 6782 xpcomco 6885 xpassen 6889 ssenen 6912 sbthlemi10 7032 infmoti 7094 dfmq0qs 7496 dfplq0qs 7497 enq0enq 7498 enq0tr 7501 npsspw 7538 nqprdisj 7611 ltnqpr 7660 ltnqpri 7661 ltexprlemdisj 7673 addcanprg 7683 recexprlemdisj 7697 caucvgprprlemval 7755 addsrpr 7812 mulsrpr 7813 mulgt0sr 7845 addcnsr 7901 mulcnsr 7902 ltresr 7906 addvalex 7911 axcnre 7948 axpre-suploc 7969 supinfneg 9669 infsupneg 9670 xrnemnf 9852 xrnepnf 9853 elfzuzb 10094 fzass4 10137 infssuzex 10323 hashfacen 10928 rexanre 11385 cbvprod 11723 nnwosdc 12206 isprm3 12286 issubm 13104 issubmd 13106 0subm 13116 insubm 13117 isnsg2 13333 lss1d 13939 tgval2 14287 epttop 14326 cnnei 14468 txuni2 14492 txbas 14494 txdis1cn 14514 xmeterval 14671 dedekindicc 14869 plyun0 14972 lgslem3 15243 bj-stan 15393 nnti 15639 |
| Copyright terms: Public domain | W3C validator |