| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi12i | GIF version | ||
| Description: Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
| anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| anbi12i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | anbi1i 458 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| 3 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 4 | 3 | anbi2i 457 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi12ci 461 ordir 822 orddi 825 3anbi123i 1212 an6 1355 xorcom 1430 trubifal 1458 truxortru 1461 truxorfal 1462 falxortru 1463 falxorfal 1464 nford 1613 nfand 1614 sbequ8 1893 sbanv 1936 sban 2006 sbbi 2010 sbnf2 2032 eu1 2102 2exeu 2170 2eu4 2171 sbabel 2399 neanior 2487 rexeqbii 2543 r19.26m 2662 reean 2700 reu5 2749 cbvreuw 2760 reu2 2991 reu3 2993 eqss 3239 unss 3378 ralunb 3385 ssin 3426 undi 3452 difundi 3456 indifdir 3460 inab 3472 difab 3473 reuss2 3484 reupick 3488 raaan 3597 prss 3823 tpss 3835 prsspw 3842 prneimg 3851 uniin 3907 intun 3953 intpr 3954 disjiun 4077 brin 4135 brdif 4136 ssext 4306 pweqb 4308 opthg2 4324 copsex4g 4332 opelopabsb 4347 eqopab2b 4367 pwin 4372 pofun 4402 wetrep 4450 ordwe 4667 wessep 4669 reg3exmidlemwe 4670 elxp3 4772 soinxp 4788 relun 4835 inopab 4853 difopab 4854 inxp 4855 opelco2g 4889 cnvco 4906 dmin 4930 restidsing 5060 intasym 5112 asymref 5113 cnvdif 5134 xpm 5149 xp11m 5166 dfco2 5227 relssdmrn 5248 cnvpom 5270 xpcom 5274 dffun4 5328 dffun4f 5333 funun 5361 funcnveq 5383 fun11 5387 fununi 5388 imadif 5400 imainlem 5401 imain 5402 fnres 5439 fnopabg 5446 fun 5496 fin 5511 dff1o2 5576 brprcneu 5619 fsn 5806 dff1o6 5899 isotr 5939 brabvv 6049 eqoprab2b 6061 fvmpopr2d 6140 dfoprab3 6335 poxp 6376 cnvoprab 6378 f1od2 6379 brtpos2 6395 tfrlem7 6461 dfer2 6679 eqer 6710 iinerm 6752 brecop 6770 eroveu 6771 erovlem 6772 oviec 6786 mapval2 6823 ixpin 6868 xpcomco 6981 xpassen 6985 ssenen 7008 sbthlemi10 7129 infmoti 7191 dfmq0qs 7612 dfplq0qs 7613 enq0enq 7614 enq0tr 7617 npsspw 7654 nqprdisj 7727 ltnqpr 7776 ltnqpri 7777 ltexprlemdisj 7789 addcanprg 7799 recexprlemdisj 7813 caucvgprprlemval 7871 addsrpr 7928 mulsrpr 7929 mulgt0sr 7961 addcnsr 8017 mulcnsr 8018 ltresr 8022 addvalex 8027 axcnre 8064 axpre-suploc 8085 supinfneg 9786 infsupneg 9787 xrnemnf 9969 xrnepnf 9970 elfzuzb 10211 fzass4 10254 infssuzex 10448 hashfacen 11053 rexanre 11726 cbvprod 12064 nnwosdc 12555 isprm3 12635 issubm 13500 issubmd 13502 0subm 13512 insubm 13513 isnsg2 13735 lss1d 14341 tgval2 14719 epttop 14758 cnnei 14900 txuni2 14924 txbas 14926 txdis1cn 14946 xmeterval 15103 dedekindicc 15301 plyun0 15404 lgslem3 15675 bj-stan 16069 nnti 16315 |
| Copyright terms: Public domain | W3C validator |