| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi12i | GIF version | ||
| Description: Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
| anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| anbi12i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | anbi1i 458 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| 3 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 4 | 3 | anbi2i 457 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi12ci 461 ordir 819 orddi 822 3anbi123i 1191 an6 1334 xorcom 1408 trubifal 1436 truxortru 1439 truxorfal 1440 falxortru 1441 falxorfal 1442 nford 1591 nfand 1592 sbequ8 1871 sbanv 1914 sban 1984 sbbi 1988 sbnf2 2010 eu1 2080 2exeu 2148 2eu4 2149 sbabel 2377 neanior 2465 rexeqbii 2521 r19.26m 2639 reean 2677 reu5 2726 cbvreuw 2737 reu2 2968 reu3 2970 eqss 3216 unss 3355 ralunb 3362 ssin 3403 undi 3429 difundi 3433 indifdir 3437 inab 3449 difab 3450 reuss2 3461 reupick 3465 raaan 3574 prss 3800 tpss 3812 prsspw 3819 prneimg 3828 uniin 3884 intun 3930 intpr 3931 disjiun 4054 brin 4112 brdif 4113 ssext 4283 pweqb 4285 opthg2 4301 copsex4g 4309 opelopabsb 4324 eqopab2b 4344 pwin 4347 pofun 4377 wetrep 4425 ordwe 4642 wessep 4644 reg3exmidlemwe 4645 elxp3 4747 soinxp 4763 relun 4810 inopab 4828 difopab 4829 inxp 4830 opelco2g 4864 cnvco 4881 dmin 4905 restidsing 5034 intasym 5086 asymref 5087 cnvdif 5108 xpm 5123 xp11m 5140 dfco2 5201 relssdmrn 5222 cnvpom 5244 xpcom 5248 dffun4 5301 dffun4f 5306 funun 5334 funcnveq 5356 fun11 5360 fununi 5361 imadif 5373 imainlem 5374 imain 5375 fnres 5412 fnopabg 5419 fun 5469 fin 5484 dff1o2 5549 brprcneu 5592 fsn 5775 dff1o6 5868 isotr 5908 brabvv 6014 eqoprab2b 6026 fvmpopr2d 6105 dfoprab3 6300 poxp 6341 cnvoprab 6343 f1od2 6344 brtpos2 6360 tfrlem7 6426 dfer2 6644 eqer 6675 iinerm 6717 brecop 6735 eroveu 6736 erovlem 6737 oviec 6751 mapval2 6788 ixpin 6833 xpcomco 6946 xpassen 6950 ssenen 6973 sbthlemi10 7094 infmoti 7156 dfmq0qs 7577 dfplq0qs 7578 enq0enq 7579 enq0tr 7582 npsspw 7619 nqprdisj 7692 ltnqpr 7741 ltnqpri 7742 ltexprlemdisj 7754 addcanprg 7764 recexprlemdisj 7778 caucvgprprlemval 7836 addsrpr 7893 mulsrpr 7894 mulgt0sr 7926 addcnsr 7982 mulcnsr 7983 ltresr 7987 addvalex 7992 axcnre 8029 axpre-suploc 8050 supinfneg 9751 infsupneg 9752 xrnemnf 9934 xrnepnf 9935 elfzuzb 10176 fzass4 10219 infssuzex 10413 hashfacen 11018 rexanre 11646 cbvprod 11984 nnwosdc 12475 isprm3 12555 issubm 13419 issubmd 13421 0subm 13431 insubm 13432 isnsg2 13654 lss1d 14260 tgval2 14638 epttop 14677 cnnei 14819 txuni2 14843 txbas 14845 txdis1cn 14865 xmeterval 15022 dedekindicc 15220 plyun0 15323 lgslem3 15594 bj-stan 15883 nnti 16129 |
| Copyright terms: Public domain | W3C validator |