| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi12i | GIF version | ||
| Description: Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
| anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| anbi12i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | anbi1i 458 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| 3 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 4 | 3 | anbi2i 457 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi12ci 461 ordir 819 orddi 822 3anbi123i 1191 an6 1334 xorcom 1408 trubifal 1436 truxortru 1439 truxorfal 1440 falxortru 1441 falxorfal 1442 nford 1590 nfand 1591 sbequ8 1870 sbanv 1913 sban 1983 sbbi 1987 sbnf2 2009 eu1 2079 2exeu 2146 2eu4 2147 sbabel 2375 neanior 2463 rexeqbii 2519 r19.26m 2637 reean 2675 reu5 2723 reu2 2961 reu3 2963 eqss 3208 unss 3347 ralunb 3354 ssin 3395 undi 3421 difundi 3425 indifdir 3429 inab 3441 difab 3442 reuss2 3453 reupick 3457 raaan 3566 prss 3789 tpss 3799 prsspw 3806 prneimg 3815 uniin 3870 intun 3916 intpr 3917 disjiun 4039 brin 4096 brdif 4097 ssext 4265 pweqb 4267 opthg2 4283 copsex4g 4291 opelopabsb 4306 eqopab2b 4326 pwin 4329 pofun 4359 wetrep 4407 ordwe 4624 wessep 4626 reg3exmidlemwe 4627 elxp3 4729 soinxp 4745 relun 4792 inopab 4810 difopab 4811 inxp 4812 opelco2g 4846 cnvco 4863 dmin 4886 restidsing 5015 intasym 5067 asymref 5068 cnvdif 5089 xpm 5104 xp11m 5121 dfco2 5182 relssdmrn 5203 cnvpom 5225 xpcom 5229 dffun4 5282 dffun4f 5287 funun 5315 funcnveq 5337 fun11 5341 fununi 5342 imadif 5354 imainlem 5355 imain 5356 fnres 5392 fnopabg 5399 fun 5448 fin 5462 dff1o2 5527 brprcneu 5569 fsn 5752 dff1o6 5845 isotr 5885 brabvv 5991 eqoprab2b 6003 fvmpopr2d 6082 dfoprab3 6277 poxp 6318 cnvoprab 6320 f1od2 6321 brtpos2 6337 tfrlem7 6403 dfer2 6621 eqer 6652 iinerm 6694 brecop 6712 eroveu 6713 erovlem 6714 oviec 6728 mapval2 6765 ixpin 6810 xpcomco 6921 xpassen 6925 ssenen 6948 sbthlemi10 7068 infmoti 7130 dfmq0qs 7542 dfplq0qs 7543 enq0enq 7544 enq0tr 7547 npsspw 7584 nqprdisj 7657 ltnqpr 7706 ltnqpri 7707 ltexprlemdisj 7719 addcanprg 7729 recexprlemdisj 7743 caucvgprprlemval 7801 addsrpr 7858 mulsrpr 7859 mulgt0sr 7891 addcnsr 7947 mulcnsr 7948 ltresr 7952 addvalex 7957 axcnre 7994 axpre-suploc 8015 supinfneg 9716 infsupneg 9717 xrnemnf 9899 xrnepnf 9900 elfzuzb 10141 fzass4 10184 infssuzex 10376 hashfacen 10981 rexanre 11531 cbvprod 11869 nnwosdc 12360 isprm3 12440 issubm 13304 issubmd 13306 0subm 13316 insubm 13317 isnsg2 13539 lss1d 14145 tgval2 14523 epttop 14562 cnnei 14704 txuni2 14728 txbas 14730 txdis1cn 14750 xmeterval 14907 dedekindicc 15105 plyun0 15208 lgslem3 15479 bj-stan 15683 nnti 15929 |
| Copyright terms: Public domain | W3C validator |