Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anbi12i | GIF version |
Description: Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
anbi12i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | anbi1i 455 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
3 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
4 | 3 | anbi2i 454 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
5 | 2, 4 | bitri 183 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: anbi12ci 458 ordir 812 orddi 815 dcan 928 3anbi123i 1183 an6 1316 xorcom 1383 trubifal 1411 truxortru 1414 truxorfal 1415 falxortru 1416 falxorfal 1417 nford 1560 nfand 1561 sbequ8 1840 sbanv 1882 sban 1948 sbbi 1952 sbnf2 1974 eu1 2044 2exeu 2111 2eu4 2112 sbabel 2339 neanior 2427 rexeqbii 2483 r19.26m 2601 reean 2638 reu5 2682 reu2 2918 reu3 2920 eqss 3162 unss 3301 ralunb 3308 ssin 3349 undi 3375 difundi 3379 indifdir 3383 inab 3395 difab 3396 reuss2 3407 reupick 3411 raaan 3521 prss 3736 tpss 3745 prsspw 3752 prneimg 3761 uniin 3816 intun 3862 intpr 3863 disjiun 3984 brin 4041 brdif 4042 ssext 4206 pweqb 4208 opthg2 4224 copsex4g 4232 opelopabsb 4245 eqopab2b 4264 pwin 4267 pofun 4297 wetrep 4345 ordwe 4560 wessep 4562 reg3exmidlemwe 4563 elxp3 4665 soinxp 4681 relun 4728 inopab 4743 difopab 4744 inxp 4745 opelco2g 4779 cnvco 4796 dmin 4819 intasym 4995 asymref 4996 cnvdif 5017 xpm 5032 xp11m 5049 dfco2 5110 relssdmrn 5131 cnvpom 5153 xpcom 5157 dffun4 5209 dffun4f 5214 funun 5242 funcnveq 5261 fun11 5265 fununi 5266 imadif 5278 imainlem 5279 imain 5280 fnres 5314 fnopabg 5321 fun 5370 fin 5384 dff1o2 5447 brprcneu 5489 fsn 5668 dff1o6 5755 isotr 5795 brabvv 5899 eqoprab2b 5911 dfoprab3 6170 poxp 6211 cnvoprab 6213 f1od2 6214 brtpos2 6230 tfrlem7 6296 dfer2 6514 eqer 6545 iinerm 6585 brecop 6603 eroveu 6604 erovlem 6605 oviec 6619 mapval2 6656 ixpin 6701 xpcomco 6804 xpassen 6808 ssenen 6829 sbthlemi10 6943 infmoti 7005 dfmq0qs 7391 dfplq0qs 7392 enq0enq 7393 enq0tr 7396 npsspw 7433 nqprdisj 7506 ltnqpr 7555 ltnqpri 7556 ltexprlemdisj 7568 addcanprg 7578 recexprlemdisj 7592 caucvgprprlemval 7650 addsrpr 7707 mulsrpr 7708 mulgt0sr 7740 addcnsr 7796 mulcnsr 7797 ltresr 7801 addvalex 7806 axcnre 7843 axpre-suploc 7864 supinfneg 9554 infsupneg 9555 xrnemnf 9734 xrnepnf 9735 elfzuzb 9975 fzass4 10018 hashfacen 10771 rexanre 11184 cbvprod 11521 infssuzex 11904 nnwosdc 11994 isprm3 12072 issubm 12695 issubmd 12696 0subm 12702 insubm 12703 tgval2 12845 epttop 12884 cnnei 13026 txuni2 13050 txbas 13052 txdis1cn 13072 xmeterval 13229 dedekindicc 13405 lgslem3 13697 bj-stan 13782 nnti 14027 |
Copyright terms: Public domain | W3C validator |