![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anbi12i | GIF version |
Description: Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
anbi12i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | anbi1i 451 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
3 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
4 | 3 | anbi2i 450 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
5 | 2, 4 | bitri 183 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: anbi12ci 454 ordir 789 orddi 792 dcan 901 3anbi123i 1153 an6 1282 xorcom 1349 trubifal 1377 truxortru 1380 truxorfal 1381 falxortru 1382 falxorfal 1383 nford 1529 nfand 1530 sbequ8 1801 sbanv 1843 sban 1904 sbbi 1908 sbnf2 1932 eu1 2000 2exeu 2067 2eu4 2068 sbabel 2281 neanior 2369 rexeqbii 2422 r19.26m 2537 reean 2573 reu5 2617 reu2 2841 reu3 2843 eqss 3078 unss 3216 ralunb 3223 ssin 3264 undi 3290 difundi 3294 indifdir 3298 inab 3310 difab 3311 reuss2 3322 reupick 3326 raaan 3435 prss 3642 tpss 3651 prsspw 3658 prneimg 3667 uniin 3722 intun 3768 intpr 3769 disjiun 3890 brin 3942 brdif 3943 ssext 4103 pweqb 4105 opthg2 4121 copsex4g 4129 opelopabsb 4142 eqopab2b 4161 pwin 4164 pofun 4194 wetrep 4242 ordwe 4450 wessep 4452 reg3exmidlemwe 4453 elxp3 4553 soinxp 4569 relun 4616 inopab 4631 difopab 4632 inxp 4633 opelco2g 4667 cnvco 4684 dmin 4707 intasym 4881 asymref 4882 cnvdif 4903 xpm 4918 xp11m 4935 dfco2 4996 relssdmrn 5017 cnvpom 5039 xpcom 5043 dffun4 5092 dffun4f 5097 funun 5125 funcnveq 5144 fun11 5148 fununi 5149 imadif 5161 imainlem 5162 imain 5163 fnres 5197 fnopabg 5204 fun 5253 fin 5267 dff1o2 5328 brprcneu 5368 fsn 5546 dff1o6 5631 isotr 5671 brabvv 5771 eqoprab2b 5783 dfoprab3 6043 poxp 6083 cnvoprab 6085 f1od2 6086 brtpos2 6102 tfrlem7 6168 dfer2 6384 eqer 6415 iinerm 6455 brecop 6473 eroveu 6474 erovlem 6475 oviec 6489 mapval2 6526 ixpin 6571 xpcomco 6673 xpassen 6677 ssenen 6698 sbthlemi10 6806 infmoti 6867 dfmq0qs 7185 dfplq0qs 7186 enq0enq 7187 enq0tr 7190 npsspw 7227 nqprdisj 7300 ltnqpr 7349 ltnqpri 7350 ltexprlemdisj 7362 addcanprg 7372 recexprlemdisj 7386 caucvgprprlemval 7444 addsrpr 7488 mulsrpr 7489 mulgt0sr 7520 addcnsr 7569 mulcnsr 7570 ltresr 7574 addvalex 7579 axcnre 7616 supinfneg 9292 infsupneg 9293 xrnemnf 9457 xrnepnf 9458 elfzuzb 9693 fzass4 9735 hashfacen 10472 rexanre 10884 infssuzex 11490 isprm3 11645 tgval2 12063 epttop 12102 cnnei 12243 txuni2 12267 txbas 12269 txdis1cn 12289 xmeterval 12424 bj-stan 12648 nnti 12883 |
Copyright terms: Public domain | W3C validator |