| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi12i | GIF version | ||
| Description: Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
| anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| anbi12i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | anbi1i 458 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| 3 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 4 | 3 | anbi2i 457 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi12ci 461 ordir 818 orddi 821 3anbi123i 1190 an6 1332 xorcom 1399 trubifal 1427 truxortru 1430 truxorfal 1431 falxortru 1432 falxorfal 1433 nford 1581 nfand 1582 sbequ8 1861 sbanv 1904 sban 1974 sbbi 1978 sbnf2 2000 eu1 2070 2exeu 2137 2eu4 2138 sbabel 2366 neanior 2454 rexeqbii 2510 r19.26m 2628 reean 2666 reu5 2714 reu2 2952 reu3 2954 eqss 3199 unss 3338 ralunb 3345 ssin 3386 undi 3412 difundi 3416 indifdir 3420 inab 3432 difab 3433 reuss2 3444 reupick 3448 raaan 3557 prss 3779 tpss 3789 prsspw 3796 prneimg 3805 uniin 3860 intun 3906 intpr 3907 disjiun 4029 brin 4086 brdif 4087 ssext 4255 pweqb 4257 opthg2 4273 copsex4g 4281 opelopabsb 4295 eqopab2b 4315 pwin 4318 pofun 4348 wetrep 4396 ordwe 4613 wessep 4615 reg3exmidlemwe 4616 elxp3 4718 soinxp 4734 relun 4781 inopab 4799 difopab 4800 inxp 4801 opelco2g 4835 cnvco 4852 dmin 4875 restidsing 5003 intasym 5055 asymref 5056 cnvdif 5077 xpm 5092 xp11m 5109 dfco2 5170 relssdmrn 5191 cnvpom 5213 xpcom 5217 dffun4 5270 dffun4f 5275 funun 5303 funcnveq 5322 fun11 5326 fununi 5327 imadif 5339 imainlem 5340 imain 5341 fnres 5377 fnopabg 5384 fun 5433 fin 5447 dff1o2 5512 brprcneu 5554 fsn 5737 dff1o6 5826 isotr 5866 brabvv 5972 eqoprab2b 5984 fvmpopr2d 6063 dfoprab3 6258 poxp 6299 cnvoprab 6301 f1od2 6302 brtpos2 6318 tfrlem7 6384 dfer2 6602 eqer 6633 iinerm 6675 brecop 6693 eroveu 6694 erovlem 6695 oviec 6709 mapval2 6746 ixpin 6791 xpcomco 6894 xpassen 6898 ssenen 6921 sbthlemi10 7041 infmoti 7103 dfmq0qs 7515 dfplq0qs 7516 enq0enq 7517 enq0tr 7520 npsspw 7557 nqprdisj 7630 ltnqpr 7679 ltnqpri 7680 ltexprlemdisj 7692 addcanprg 7702 recexprlemdisj 7716 caucvgprprlemval 7774 addsrpr 7831 mulsrpr 7832 mulgt0sr 7864 addcnsr 7920 mulcnsr 7921 ltresr 7925 addvalex 7930 axcnre 7967 axpre-suploc 7988 supinfneg 9688 infsupneg 9689 xrnemnf 9871 xrnepnf 9872 elfzuzb 10113 fzass4 10156 infssuzex 10342 hashfacen 10947 rexanre 11404 cbvprod 11742 nnwosdc 12233 isprm3 12313 issubm 13176 issubmd 13178 0subm 13188 insubm 13189 isnsg2 13411 lss1d 14017 tgval2 14395 epttop 14434 cnnei 14576 txuni2 14600 txbas 14602 txdis1cn 14622 xmeterval 14779 dedekindicc 14977 plyun0 15080 lgslem3 15351 bj-stan 15501 nnti 15747 |
| Copyright terms: Public domain | W3C validator |