![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anbi12i | GIF version |
Description: Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
anbi12i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | anbi1i 458 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
3 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
4 | 3 | anbi2i 457 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anbi12ci 461 ordir 818 orddi 821 3anbi123i 1190 an6 1332 xorcom 1399 trubifal 1427 truxortru 1430 truxorfal 1431 falxortru 1432 falxorfal 1433 nford 1578 nfand 1579 sbequ8 1858 sbanv 1901 sban 1971 sbbi 1975 sbnf2 1997 eu1 2067 2exeu 2134 2eu4 2135 sbabel 2363 neanior 2451 rexeqbii 2507 r19.26m 2625 reean 2663 reu5 2711 reu2 2949 reu3 2951 eqss 3195 unss 3334 ralunb 3341 ssin 3382 undi 3408 difundi 3412 indifdir 3416 inab 3428 difab 3429 reuss2 3440 reupick 3444 raaan 3553 prss 3775 tpss 3785 prsspw 3792 prneimg 3801 uniin 3856 intun 3902 intpr 3903 disjiun 4025 brin 4082 brdif 4083 ssext 4251 pweqb 4253 opthg2 4269 copsex4g 4277 opelopabsb 4291 eqopab2b 4311 pwin 4314 pofun 4344 wetrep 4392 ordwe 4609 wessep 4611 reg3exmidlemwe 4612 elxp3 4714 soinxp 4730 relun 4777 inopab 4795 difopab 4796 inxp 4797 opelco2g 4831 cnvco 4848 dmin 4871 restidsing 4999 intasym 5051 asymref 5052 cnvdif 5073 xpm 5088 xp11m 5105 dfco2 5166 relssdmrn 5187 cnvpom 5209 xpcom 5213 dffun4 5266 dffun4f 5271 funun 5299 funcnveq 5318 fun11 5322 fununi 5323 imadif 5335 imainlem 5336 imain 5337 fnres 5371 fnopabg 5378 fun 5427 fin 5441 dff1o2 5506 brprcneu 5548 fsn 5731 dff1o6 5820 isotr 5860 brabvv 5965 eqoprab2b 5977 fvmpopr2d 6056 dfoprab3 6246 poxp 6287 cnvoprab 6289 f1od2 6290 brtpos2 6306 tfrlem7 6372 dfer2 6590 eqer 6621 iinerm 6663 brecop 6681 eroveu 6682 erovlem 6683 oviec 6697 mapval2 6734 ixpin 6779 xpcomco 6882 xpassen 6886 ssenen 6909 sbthlemi10 7027 infmoti 7089 dfmq0qs 7491 dfplq0qs 7492 enq0enq 7493 enq0tr 7496 npsspw 7533 nqprdisj 7606 ltnqpr 7655 ltnqpri 7656 ltexprlemdisj 7668 addcanprg 7678 recexprlemdisj 7692 caucvgprprlemval 7750 addsrpr 7807 mulsrpr 7808 mulgt0sr 7840 addcnsr 7896 mulcnsr 7897 ltresr 7901 addvalex 7906 axcnre 7943 axpre-suploc 7964 supinfneg 9663 infsupneg 9664 xrnemnf 9846 xrnepnf 9847 elfzuzb 10088 fzass4 10131 hashfacen 10910 rexanre 11367 cbvprod 11704 infssuzex 12089 nnwosdc 12179 isprm3 12259 issubm 13047 issubmd 13049 0subm 13059 insubm 13060 isnsg2 13276 lss1d 13882 tgval2 14230 epttop 14269 cnnei 14411 txuni2 14435 txbas 14437 txdis1cn 14457 xmeterval 14614 dedekindicc 14812 plyun0 14915 lgslem3 15159 bj-stan 15309 nnti 15555 |
Copyright terms: Public domain | W3C validator |