Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anbi12i | GIF version |
Description: Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
anbi12i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | anbi1i 454 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
3 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
4 | 3 | anbi2i 453 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
5 | 2, 4 | bitri 183 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: anbi12ci 457 ordir 807 orddi 810 dcan 923 3anbi123i 1178 an6 1311 xorcom 1378 trubifal 1406 truxortru 1409 truxorfal 1410 falxortru 1411 falxorfal 1412 nford 1555 nfand 1556 sbequ8 1835 sbanv 1877 sban 1943 sbbi 1947 sbnf2 1969 eu1 2039 2exeu 2106 2eu4 2107 sbabel 2335 neanior 2423 rexeqbii 2479 r19.26m 2597 reean 2634 reu5 2678 reu2 2914 reu3 2916 eqss 3157 unss 3296 ralunb 3303 ssin 3344 undi 3370 difundi 3374 indifdir 3378 inab 3390 difab 3391 reuss2 3402 reupick 3406 raaan 3515 prss 3729 tpss 3738 prsspw 3745 prneimg 3754 uniin 3809 intun 3855 intpr 3856 disjiun 3977 brin 4034 brdif 4035 ssext 4199 pweqb 4201 opthg2 4217 copsex4g 4225 opelopabsb 4238 eqopab2b 4257 pwin 4260 pofun 4290 wetrep 4338 ordwe 4553 wessep 4555 reg3exmidlemwe 4556 elxp3 4658 soinxp 4674 relun 4721 inopab 4736 difopab 4737 inxp 4738 opelco2g 4772 cnvco 4789 dmin 4812 intasym 4988 asymref 4989 cnvdif 5010 xpm 5025 xp11m 5042 dfco2 5103 relssdmrn 5124 cnvpom 5146 xpcom 5150 dffun4 5199 dffun4f 5204 funun 5232 funcnveq 5251 fun11 5255 fununi 5256 imadif 5268 imainlem 5269 imain 5270 fnres 5304 fnopabg 5311 fun 5360 fin 5374 dff1o2 5437 brprcneu 5479 fsn 5657 dff1o6 5744 isotr 5784 brabvv 5888 eqoprab2b 5900 dfoprab3 6159 poxp 6200 cnvoprab 6202 f1od2 6203 brtpos2 6219 tfrlem7 6285 dfer2 6502 eqer 6533 iinerm 6573 brecop 6591 eroveu 6592 erovlem 6593 oviec 6607 mapval2 6644 ixpin 6689 xpcomco 6792 xpassen 6796 ssenen 6817 sbthlemi10 6931 infmoti 6993 dfmq0qs 7370 dfplq0qs 7371 enq0enq 7372 enq0tr 7375 npsspw 7412 nqprdisj 7485 ltnqpr 7534 ltnqpri 7535 ltexprlemdisj 7547 addcanprg 7557 recexprlemdisj 7571 caucvgprprlemval 7629 addsrpr 7686 mulsrpr 7687 mulgt0sr 7719 addcnsr 7775 mulcnsr 7776 ltresr 7780 addvalex 7785 axcnre 7822 axpre-suploc 7843 supinfneg 9533 infsupneg 9534 xrnemnf 9713 xrnepnf 9714 elfzuzb 9954 fzass4 9997 hashfacen 10749 rexanre 11162 cbvprod 11499 infssuzex 11882 nnwosdc 11972 isprm3 12050 tgval2 12691 epttop 12730 cnnei 12872 txuni2 12896 txbas 12898 txdis1cn 12918 xmeterval 13075 dedekindicc 13251 lgslem3 13543 bj-stan 13628 nnti 13874 |
Copyright terms: Public domain | W3C validator |