Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1cnvcnv | GIF version |
Description: Two ways to express that a set 𝐴 (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
f1cnvcnv | ⊢ (◡◡𝐴:dom 𝐴–1-1→V ↔ (Fun ◡𝐴 ∧ Fun ◡◡𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1 5193 | . 2 ⊢ (◡◡𝐴:dom 𝐴–1-1→V ↔ (◡◡𝐴:dom 𝐴⟶V ∧ Fun ◡◡◡𝐴)) | |
2 | dffn2 5339 | . . . 4 ⊢ (◡◡𝐴 Fn dom 𝐴 ↔ ◡◡𝐴:dom 𝐴⟶V) | |
3 | dmcnvcnv 4828 | . . . . 5 ⊢ dom ◡◡𝐴 = dom 𝐴 | |
4 | df-fn 5191 | . . . . 5 ⊢ (◡◡𝐴 Fn dom 𝐴 ↔ (Fun ◡◡𝐴 ∧ dom ◡◡𝐴 = dom 𝐴)) | |
5 | 3, 4 | mpbiran2 931 | . . . 4 ⊢ (◡◡𝐴 Fn dom 𝐴 ↔ Fun ◡◡𝐴) |
6 | 2, 5 | bitr3i 185 | . . 3 ⊢ (◡◡𝐴:dom 𝐴⟶V ↔ Fun ◡◡𝐴) |
7 | relcnv 4982 | . . . . 5 ⊢ Rel ◡𝐴 | |
8 | dfrel2 5054 | . . . . 5 ⊢ (Rel ◡𝐴 ↔ ◡◡◡𝐴 = ◡𝐴) | |
9 | 7, 8 | mpbi 144 | . . . 4 ⊢ ◡◡◡𝐴 = ◡𝐴 |
10 | 9 | funeqi 5209 | . . 3 ⊢ (Fun ◡◡◡𝐴 ↔ Fun ◡𝐴) |
11 | 6, 10 | anbi12ci 457 | . 2 ⊢ ((◡◡𝐴:dom 𝐴⟶V ∧ Fun ◡◡◡𝐴) ↔ (Fun ◡𝐴 ∧ Fun ◡◡𝐴)) |
12 | 1, 11 | bitri 183 | 1 ⊢ (◡◡𝐴:dom 𝐴–1-1→V ↔ (Fun ◡𝐴 ∧ Fun ◡◡𝐴)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1343 Vcvv 2726 ◡ccnv 4603 dom cdm 4604 Rel wrel 4609 Fun wfun 5182 Fn wfn 5183 ⟶wf 5184 –1-1→wf1 5185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |