Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1cnvcnv | GIF version |
Description: Two ways to express that a set 𝐴 (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
f1cnvcnv | ⊢ (◡◡𝐴:dom 𝐴–1-1→V ↔ (Fun ◡𝐴 ∧ Fun ◡◡𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1 5203 | . 2 ⊢ (◡◡𝐴:dom 𝐴–1-1→V ↔ (◡◡𝐴:dom 𝐴⟶V ∧ Fun ◡◡◡𝐴)) | |
2 | dffn2 5349 | . . . 4 ⊢ (◡◡𝐴 Fn dom 𝐴 ↔ ◡◡𝐴:dom 𝐴⟶V) | |
3 | dmcnvcnv 4835 | . . . . 5 ⊢ dom ◡◡𝐴 = dom 𝐴 | |
4 | df-fn 5201 | . . . . 5 ⊢ (◡◡𝐴 Fn dom 𝐴 ↔ (Fun ◡◡𝐴 ∧ dom ◡◡𝐴 = dom 𝐴)) | |
5 | 3, 4 | mpbiran2 936 | . . . 4 ⊢ (◡◡𝐴 Fn dom 𝐴 ↔ Fun ◡◡𝐴) |
6 | 2, 5 | bitr3i 185 | . . 3 ⊢ (◡◡𝐴:dom 𝐴⟶V ↔ Fun ◡◡𝐴) |
7 | relcnv 4989 | . . . . 5 ⊢ Rel ◡𝐴 | |
8 | dfrel2 5061 | . . . . 5 ⊢ (Rel ◡𝐴 ↔ ◡◡◡𝐴 = ◡𝐴) | |
9 | 7, 8 | mpbi 144 | . . . 4 ⊢ ◡◡◡𝐴 = ◡𝐴 |
10 | 9 | funeqi 5219 | . . 3 ⊢ (Fun ◡◡◡𝐴 ↔ Fun ◡𝐴) |
11 | 6, 10 | anbi12ci 458 | . 2 ⊢ ((◡◡𝐴:dom 𝐴⟶V ∧ Fun ◡◡◡𝐴) ↔ (Fun ◡𝐴 ∧ Fun ◡◡𝐴)) |
12 | 1, 11 | bitri 183 | 1 ⊢ (◡◡𝐴:dom 𝐴–1-1→V ↔ (Fun ◡𝐴 ∧ Fun ◡◡𝐴)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1348 Vcvv 2730 ◡ccnv 4610 dom cdm 4611 Rel wrel 4616 Fun wfun 5192 Fn wfn 5193 ⟶wf 5194 –1-1→wf1 5195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |