| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1cnvcnv | GIF version | ||
| Description: Two ways to express that a set 𝐴 (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| f1cnvcnv | ⊢ (◡◡𝐴:dom 𝐴–1-1→V ↔ (Fun ◡𝐴 ∧ Fun ◡◡𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1 5263 | . 2 ⊢ (◡◡𝐴:dom 𝐴–1-1→V ↔ (◡◡𝐴:dom 𝐴⟶V ∧ Fun ◡◡◡𝐴)) | |
| 2 | dffn2 5409 | . . . 4 ⊢ (◡◡𝐴 Fn dom 𝐴 ↔ ◡◡𝐴:dom 𝐴⟶V) | |
| 3 | dmcnvcnv 4890 | . . . . 5 ⊢ dom ◡◡𝐴 = dom 𝐴 | |
| 4 | df-fn 5261 | . . . . 5 ⊢ (◡◡𝐴 Fn dom 𝐴 ↔ (Fun ◡◡𝐴 ∧ dom ◡◡𝐴 = dom 𝐴)) | |
| 5 | 3, 4 | mpbiran2 943 | . . . 4 ⊢ (◡◡𝐴 Fn dom 𝐴 ↔ Fun ◡◡𝐴) |
| 6 | 2, 5 | bitr3i 186 | . . 3 ⊢ (◡◡𝐴:dom 𝐴⟶V ↔ Fun ◡◡𝐴) |
| 7 | relcnv 5047 | . . . . 5 ⊢ Rel ◡𝐴 | |
| 8 | dfrel2 5120 | . . . . 5 ⊢ (Rel ◡𝐴 ↔ ◡◡◡𝐴 = ◡𝐴) | |
| 9 | 7, 8 | mpbi 145 | . . . 4 ⊢ ◡◡◡𝐴 = ◡𝐴 |
| 10 | 9 | funeqi 5279 | . . 3 ⊢ (Fun ◡◡◡𝐴 ↔ Fun ◡𝐴) |
| 11 | 6, 10 | anbi12ci 461 | . 2 ⊢ ((◡◡𝐴:dom 𝐴⟶V ∧ Fun ◡◡◡𝐴) ↔ (Fun ◡𝐴 ∧ Fun ◡◡𝐴)) |
| 12 | 1, 11 | bitri 184 | 1 ⊢ (◡◡𝐴:dom 𝐴–1-1→V ↔ (Fun ◡𝐴 ∧ Fun ◡◡𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 Vcvv 2763 ◡ccnv 4662 dom cdm 4663 Rel wrel 4668 Fun wfun 5252 Fn wfn 5253 ⟶wf 5254 –1-1→wf1 5255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |