ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1cnvcnv GIF version

Theorem f1cnvcnv 5398
Description: Two ways to express that a set 𝐴 (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
f1cnvcnv (𝐴:dom 𝐴1-1→V ↔ (Fun 𝐴 ∧ Fun 𝐴))

Proof of Theorem f1cnvcnv
StepHypRef Expression
1 df-f1 5187 . 2 (𝐴:dom 𝐴1-1→V ↔ (𝐴:dom 𝐴⟶V ∧ Fun 𝐴))
2 dffn2 5333 . . . 4 (𝐴 Fn dom 𝐴𝐴:dom 𝐴⟶V)
3 dmcnvcnv 4822 . . . . 5 dom 𝐴 = dom 𝐴
4 df-fn 5185 . . . . 5 (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴))
53, 4mpbiran2 930 . . . 4 (𝐴 Fn dom 𝐴 ↔ Fun 𝐴)
62, 5bitr3i 185 . . 3 (𝐴:dom 𝐴⟶V ↔ Fun 𝐴)
7 relcnv 4976 . . . . 5 Rel 𝐴
8 dfrel2 5048 . . . . 5 (Rel 𝐴𝐴 = 𝐴)
97, 8mpbi 144 . . . 4 𝐴 = 𝐴
109funeqi 5203 . . 3 (Fun 𝐴 ↔ Fun 𝐴)
116, 10anbi12ci 457 . 2 ((𝐴:dom 𝐴⟶V ∧ Fun 𝐴) ↔ (Fun 𝐴 ∧ Fun 𝐴))
121, 11bitri 183 1 (𝐴:dom 𝐴1-1→V ↔ (Fun 𝐴 ∧ Fun 𝐴))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1342  Vcvv 2721  ccnv 4597  dom cdm 4598  Rel wrel 4603  Fun wfun 5176   Fn wfn 5177  wf 5178  1-1wf1 5179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-br 3977  df-opab 4038  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator