ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabsbALT GIF version

Theorem opelopabsbALT 4323
Description: The law of concretion in terms of substitutions. Less general than opelopabsb 4324, but having a much shorter proof. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
opelopabsbALT (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem opelopabsbALT
StepHypRef Expression
1 excom 1688 . . 3 (∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑥(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
2 vex 2779 . . . . . . 7 𝑧 ∈ V
3 vex 2779 . . . . . . 7 𝑤 ∈ V
42, 3opth 4299 . . . . . 6 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑧 = 𝑥𝑤 = 𝑦))
5 equcom 1730 . . . . . . 7 (𝑧 = 𝑥𝑥 = 𝑧)
6 equcom 1730 . . . . . . 7 (𝑤 = 𝑦𝑦 = 𝑤)
75, 6anbi12ci 461 . . . . . 6 ((𝑧 = 𝑥𝑤 = 𝑦) ↔ (𝑦 = 𝑤𝑥 = 𝑧))
84, 7bitri 184 . . . . 5 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑦 = 𝑤𝑥 = 𝑧))
98anbi1i 458 . . . 4 ((⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ((𝑦 = 𝑤𝑥 = 𝑧) ∧ 𝜑))
1092exbii 1630 . . 3 (∃𝑦𝑥(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑥((𝑦 = 𝑤𝑥 = 𝑧) ∧ 𝜑))
111, 10bitri 184 . 2 (∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑥((𝑦 = 𝑤𝑥 = 𝑧) ∧ 𝜑))
12 elopab 4322 . 2 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
13 2sb5 2012 . 2 ([𝑤 / 𝑦][𝑧 / 𝑥]𝜑 ↔ ∃𝑦𝑥((𝑦 = 𝑤𝑥 = 𝑧) ∧ 𝜑))
1411, 12, 133bitr4i 212 1 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wex 1516  [wsb 1786  wcel 2178  cop 3646  {copab 4120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122
This theorem is referenced by:  inopab  4828  cnvopab  5103
  Copyright terms: Public domain W3C validator