ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabsbALT GIF version

Theorem opelopabsbALT 4244
Description: The law of concretion in terms of substitutions. Less general than opelopabsb 4245, but having a much shorter proof. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
opelopabsbALT (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem opelopabsbALT
StepHypRef Expression
1 excom 1657 . . 3 (∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑥(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
2 vex 2733 . . . . . . 7 𝑧 ∈ V
3 vex 2733 . . . . . . 7 𝑤 ∈ V
42, 3opth 4222 . . . . . 6 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑧 = 𝑥𝑤 = 𝑦))
5 equcom 1699 . . . . . . 7 (𝑧 = 𝑥𝑥 = 𝑧)
6 equcom 1699 . . . . . . 7 (𝑤 = 𝑦𝑦 = 𝑤)
75, 6anbi12ci 458 . . . . . 6 ((𝑧 = 𝑥𝑤 = 𝑦) ↔ (𝑦 = 𝑤𝑥 = 𝑧))
84, 7bitri 183 . . . . 5 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑦 = 𝑤𝑥 = 𝑧))
98anbi1i 455 . . . 4 ((⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ((𝑦 = 𝑤𝑥 = 𝑧) ∧ 𝜑))
1092exbii 1599 . . 3 (∃𝑦𝑥(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑥((𝑦 = 𝑤𝑥 = 𝑧) ∧ 𝜑))
111, 10bitri 183 . 2 (∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑥((𝑦 = 𝑤𝑥 = 𝑧) ∧ 𝜑))
12 elopab 4243 . 2 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
13 2sb5 1976 . 2 ([𝑤 / 𝑦][𝑧 / 𝑥]𝜑 ↔ ∃𝑦𝑥((𝑦 = 𝑤𝑥 = 𝑧) ∧ 𝜑))
1411, 12, 133bitr4i 211 1 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wex 1485  [wsb 1755  wcel 2141  cop 3586  {copab 4049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051
This theorem is referenced by:  inopab  4743  cnvopab  5012
  Copyright terms: Public domain W3C validator