 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-12 GIF version

Theorem ax-12 1443
 Description: Rederive the original version of the axiom from ax-i12 1439. (Contributed by Mario Carneiro, 3-Feb-2015.)
Assertion
Ref Expression
ax-12 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))

Proof of Theorem ax-12
StepHypRef Expression
1 ax-i12 1439 . . . 4 (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
21ori 675 . . 3 (¬ ∀𝑧 𝑧 = 𝑥 → (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
32ord 676 . 2 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
4 ax-4 1441 . 2 (∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
53, 4syl6 33 1 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 662  ∀wal 1283   = wceq 1285 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in2 578  ax-io 663  ax-i12 1439  ax-4 1441 This theorem depends on definitions:  df-bi 115 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator