Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sp | GIF version |
Description: Specialization. Another name for ax-4 1503. (Contributed by NM, 21-May-2008.) |
Ref | Expression |
---|---|
sp | ⊢ (∀𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-4 1503 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 |
This theorem was proved from axioms: ax-4 1503 |
This theorem is referenced by: axi12 1507 nfr 1511 sps 1530 spsd 1531 19.3 1547 cbv1h 1739 nfald 1753 dveeq2 1808 nfsbxy 1935 nfsbxyt 1936 nfcr 2304 nfabdw 2331 rsp 2517 ceqex 2857 abidnf 2898 mob2 2910 csbie2t 3097 sbcnestgf 3100 mpteq12f 4069 dtruarb 4177 copsex2t 4230 ssopab2 4260 eusv1 4437 alxfr 4446 eunex 4545 iota1 5174 fiintim 6906 genprndl 7483 genprndu 7484 fiinopn 12796 bdel 13880 bdsepnft 13922 strcollnft 14019 |
Copyright terms: Public domain | W3C validator |