| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sp | GIF version | ||
| Description: Specialization. Another name for ax-4 1556. (Contributed by NM, 21-May-2008.) |
| Ref | Expression |
|---|---|
| sp | ⊢ (∀𝑥𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-4 1556 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 |
| This theorem was proved from axioms: ax-4 1556 |
| This theorem is referenced by: axi12 1560 nfr 1564 sps 1583 spsd 1584 19.3 1600 cbv1h 1792 nfald 1806 dveeq2 1861 nfsbxy 1993 nfsbxyt 1994 nfcr 2364 nfabdw 2391 rsp 2577 ceqex 2930 abidnf 2971 mob2 2983 csbie2t 3173 sbcnestgf 3176 mpteq12f 4163 dtruarb 4274 copsex2t 4330 ssopab2 4363 eusv1 4542 alxfr 4551 eunex 4652 iota1 5292 fiintim 7089 genprndl 7704 genprndu 7705 fiinopn 14672 bdel 16166 bdsepnft 16208 strcollnft 16305 |
| Copyright terms: Public domain | W3C validator |