ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sp GIF version

Theorem sp 1522
Description: Specialization. Another name for ax-4 1521. (Contributed by NM, 21-May-2008.)
Assertion
Ref Expression
sp (∀𝑥𝜑𝜑)

Proof of Theorem sp
StepHypRef Expression
1 ax-4 1521 1 (∀𝑥𝜑𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362
This theorem was proved from axioms:  ax-4 1521
This theorem is referenced by:  axi12  1525  nfr  1529  sps  1548  spsd  1549  19.3  1565  cbv1h  1757  nfald  1771  dveeq2  1826  nfsbxy  1958  nfsbxyt  1959  nfcr  2328  nfabdw  2355  rsp  2541  ceqex  2888  abidnf  2929  mob2  2941  csbie2t  3130  sbcnestgf  3133  mpteq12f  4110  dtruarb  4221  copsex2t  4275  ssopab2  4307  eusv1  4484  alxfr  4493  eunex  4594  iota1  5230  fiintim  6987  genprndl  7583  genprndu  7584  fiinopn  14183  bdel  15407  bdsepnft  15449  strcollnft  15546
  Copyright terms: Public domain W3C validator