| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sp | GIF version | ||
| Description: Specialization. Another name for ax-4 1532. (Contributed by NM, 21-May-2008.) |
| Ref | Expression |
|---|---|
| sp | ⊢ (∀𝑥𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-4 1532 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 |
| This theorem was proved from axioms: ax-4 1532 |
| This theorem is referenced by: axi12 1536 nfr 1540 sps 1559 spsd 1560 19.3 1576 cbv1h 1768 nfald 1782 dveeq2 1837 nfsbxy 1969 nfsbxyt 1970 nfcr 2339 nfabdw 2366 rsp 2552 ceqex 2899 abidnf 2940 mob2 2952 csbie2t 3141 sbcnestgf 3144 mpteq12f 4123 dtruarb 4234 copsex2t 4288 ssopab2 4320 eusv1 4497 alxfr 4506 eunex 4607 iota1 5243 fiintim 7010 genprndl 7616 genprndu 7617 fiinopn 14394 bdel 15645 bdsepnft 15687 strcollnft 15784 |
| Copyright terms: Public domain | W3C validator |