Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sp | GIF version |
Description: Specialization. Another name for ax-4 1498. (Contributed by NM, 21-May-2008.) |
Ref | Expression |
---|---|
sp | ⊢ (∀𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-4 1498 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 |
This theorem was proved from axioms: ax-4 1498 |
This theorem is referenced by: axi12 1502 nfr 1506 sps 1525 spsd 1526 19.3 1542 cbv1h 1734 nfald 1748 dveeq2 1803 nfsbxy 1930 nfsbxyt 1931 nfcr 2300 nfabdw 2327 rsp 2513 ceqex 2853 abidnf 2894 mob2 2906 csbie2t 3093 sbcnestgf 3096 mpteq12f 4062 dtruarb 4170 copsex2t 4223 ssopab2 4253 eusv1 4430 alxfr 4439 eunex 4538 iota1 5167 fiintim 6894 genprndl 7462 genprndu 7463 fiinopn 12642 bdel 13727 bdsepnft 13769 strcollnft 13866 |
Copyright terms: Public domain | W3C validator |