| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sp | GIF version | ||
| Description: Specialization. Another name for ax-4 1534. (Contributed by NM, 21-May-2008.) |
| Ref | Expression |
|---|---|
| sp | ⊢ (∀𝑥𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-4 1534 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 |
| This theorem was proved from axioms: ax-4 1534 |
| This theorem is referenced by: axi12 1538 nfr 1542 sps 1561 spsd 1562 19.3 1578 cbv1h 1770 nfald 1784 dveeq2 1839 nfsbxy 1971 nfsbxyt 1972 nfcr 2341 nfabdw 2368 rsp 2554 ceqex 2904 abidnf 2945 mob2 2957 csbie2t 3146 sbcnestgf 3149 mpteq12f 4132 dtruarb 4243 copsex2t 4297 ssopab2 4330 eusv1 4507 alxfr 4516 eunex 4617 iota1 5255 fiintim 7043 genprndl 7654 genprndu 7655 fiinopn 14551 bdel 15919 bdsepnft 15961 strcollnft 16058 |
| Copyright terms: Public domain | W3C validator |