Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sp | GIF version |
Description: Specialization. Another name for ax-4 1508. (Contributed by NM, 21-May-2008.) |
Ref | Expression |
---|---|
sp | ⊢ (∀𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-4 1508 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 |
This theorem was proved from axioms: ax-4 1508 |
This theorem is referenced by: axi12 1512 nfr 1516 sps 1535 spsd 1536 19.3 1552 cbv1h 1744 nfald 1758 dveeq2 1813 nfsbxy 1940 nfsbxyt 1941 nfcr 2309 nfabdw 2336 rsp 2522 ceqex 2862 abidnf 2903 mob2 2915 csbie2t 3103 sbcnestgf 3106 mpteq12f 4078 dtruarb 4186 copsex2t 4239 ssopab2 4269 eusv1 4446 alxfr 4455 eunex 4554 iota1 5184 fiintim 6918 genprndl 7495 genprndu 7496 fiinopn 13073 bdel 14157 bdsepnft 14199 strcollnft 14296 |
Copyright terms: Public domain | W3C validator |