Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  ax-bdsb GIF version

Axiom ax-bdsb 13704
Description: A formula resulting from proper substitution in a bounded formula is bounded. This probably cannot be proved from the other axioms, since neither the definiens in df-sb 1751, nor probably any other equivalent formula, is syntactically bounded. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdsb.1 BOUNDED 𝜑
Assertion
Ref Expression
ax-bdsb BOUNDED [𝑦 / 𝑥]𝜑

Detailed syntax breakdown of Axiom ax-bdsb
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
41, 2, 3wsb 1750 . 2 wff [𝑦 / 𝑥]𝜑
54wbd 13694 1 wff BOUNDED [𝑦 / 𝑥]𝜑
Colors of variables: wff set class
This axiom is referenced by:  bdab  13720  bdph  13732  bdsbc  13740  bdcriota  13765
  Copyright terms: Public domain W3C validator