Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcriota GIF version

Theorem bdcriota 16246
Description: A class given by a restricted definition binder is bounded, under the given hypotheses. (Contributed by BJ, 24-Nov-2019.)
Hypotheses
Ref Expression
bdcriota.bd BOUNDED 𝜑
bdcriota.ex ∃!𝑥𝑦 𝜑
Assertion
Ref Expression
bdcriota BOUNDED (𝑥𝑦 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bdcriota
Dummy variables 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdcriota.bd . . . . . . . . 9 BOUNDED 𝜑
21ax-bdsb 16185 . . . . . . . 8 BOUNDED [𝑧 / 𝑥]𝜑
3 ax-bdel 16184 . . . . . . . 8 BOUNDED 𝑡𝑧
42, 3ax-bdim 16177 . . . . . . 7 BOUNDED ([𝑧 / 𝑥]𝜑𝑡𝑧)
54ax-bdal 16181 . . . . . 6 BOUNDED𝑧𝑦 ([𝑧 / 𝑥]𝜑𝑡𝑧)
6 df-ral 2513 . . . . . . . . 9 (∀𝑧𝑦 ([𝑧 / 𝑥]𝜑𝑡𝑧) ↔ ∀𝑧(𝑧𝑦 → ([𝑧 / 𝑥]𝜑𝑡𝑧)))
7 impexp 263 . . . . . . . . . . 11 (((𝑧𝑦 ∧ [𝑧 / 𝑥]𝜑) → 𝑡𝑧) ↔ (𝑧𝑦 → ([𝑧 / 𝑥]𝜑𝑡𝑧)))
87bicomi 132 . . . . . . . . . 10 ((𝑧𝑦 → ([𝑧 / 𝑥]𝜑𝑡𝑧)) ↔ ((𝑧𝑦 ∧ [𝑧 / 𝑥]𝜑) → 𝑡𝑧))
98albii 1516 . . . . . . . . 9 (∀𝑧(𝑧𝑦 → ([𝑧 / 𝑥]𝜑𝑡𝑧)) ↔ ∀𝑧((𝑧𝑦 ∧ [𝑧 / 𝑥]𝜑) → 𝑡𝑧))
106, 9bitri 184 . . . . . . . 8 (∀𝑧𝑦 ([𝑧 / 𝑥]𝜑𝑡𝑧) ↔ ∀𝑧((𝑧𝑦 ∧ [𝑧 / 𝑥]𝜑) → 𝑡𝑧))
11 sban 2006 . . . . . . . . . . . 12 ([𝑧 / 𝑥](𝑥𝑦𝜑) ↔ ([𝑧 / 𝑥]𝑥𝑦 ∧ [𝑧 / 𝑥]𝜑))
12 clelsb1 2334 . . . . . . . . . . . . 13 ([𝑧 / 𝑥]𝑥𝑦𝑧𝑦)
1312anbi1i 458 . . . . . . . . . . . 12 (([𝑧 / 𝑥]𝑥𝑦 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑧𝑦 ∧ [𝑧 / 𝑥]𝜑))
1411, 13bitri 184 . . . . . . . . . . 11 ([𝑧 / 𝑥](𝑥𝑦𝜑) ↔ (𝑧𝑦 ∧ [𝑧 / 𝑥]𝜑))
1514bicomi 132 . . . . . . . . . 10 ((𝑧𝑦 ∧ [𝑧 / 𝑥]𝜑) ↔ [𝑧 / 𝑥](𝑥𝑦𝜑))
1615imbi1i 238 . . . . . . . . 9 (((𝑧𝑦 ∧ [𝑧 / 𝑥]𝜑) → 𝑡𝑧) ↔ ([𝑧 / 𝑥](𝑥𝑦𝜑) → 𝑡𝑧))
1716albii 1516 . . . . . . . 8 (∀𝑧((𝑧𝑦 ∧ [𝑧 / 𝑥]𝜑) → 𝑡𝑧) ↔ ∀𝑧([𝑧 / 𝑥](𝑥𝑦𝜑) → 𝑡𝑧))
1810, 17bitri 184 . . . . . . 7 (∀𝑧𝑦 ([𝑧 / 𝑥]𝜑𝑡𝑧) ↔ ∀𝑧([𝑧 / 𝑥](𝑥𝑦𝜑) → 𝑡𝑧))
19 df-clab 2216 . . . . . . . . . 10 (𝑧 ∈ {𝑥 ∣ (𝑥𝑦𝜑)} ↔ [𝑧 / 𝑥](𝑥𝑦𝜑))
2019bicomi 132 . . . . . . . . 9 ([𝑧 / 𝑥](𝑥𝑦𝜑) ↔ 𝑧 ∈ {𝑥 ∣ (𝑥𝑦𝜑)})
2120imbi1i 238 . . . . . . . 8 (([𝑧 / 𝑥](𝑥𝑦𝜑) → 𝑡𝑧) ↔ (𝑧 ∈ {𝑥 ∣ (𝑥𝑦𝜑)} → 𝑡𝑧))
2221albii 1516 . . . . . . 7 (∀𝑧([𝑧 / 𝑥](𝑥𝑦𝜑) → 𝑡𝑧) ↔ ∀𝑧(𝑧 ∈ {𝑥 ∣ (𝑥𝑦𝜑)} → 𝑡𝑧))
2318, 22bitri 184 . . . . . 6 (∀𝑧𝑦 ([𝑧 / 𝑥]𝜑𝑡𝑧) ↔ ∀𝑧(𝑧 ∈ {𝑥 ∣ (𝑥𝑦𝜑)} → 𝑡𝑧))
245, 23bd0 16187 . . . . 5 BOUNDED𝑧(𝑧 ∈ {𝑥 ∣ (𝑥𝑦𝜑)} → 𝑡𝑧)
2524bdcab 16212 . . . 4 BOUNDED {𝑡 ∣ ∀𝑧(𝑧 ∈ {𝑥 ∣ (𝑥𝑦𝜑)} → 𝑡𝑧)}
26 df-int 3924 . . . 4 {𝑥 ∣ (𝑥𝑦𝜑)} = {𝑡 ∣ ∀𝑧(𝑧 ∈ {𝑥 ∣ (𝑥𝑦𝜑)} → 𝑡𝑧)}
2725, 26bdceqir 16207 . . 3 BOUNDED {𝑥 ∣ (𝑥𝑦𝜑)}
28 bdcriota.ex . . . . 5 ∃!𝑥𝑦 𝜑
29 df-reu 2515 . . . . 5 (∃!𝑥𝑦 𝜑 ↔ ∃!𝑥(𝑥𝑦𝜑))
3028, 29mpbi 145 . . . 4 ∃!𝑥(𝑥𝑦𝜑)
31 iotaint 5292 . . . 4 (∃!𝑥(𝑥𝑦𝜑) → (℩𝑥(𝑥𝑦𝜑)) = {𝑥 ∣ (𝑥𝑦𝜑)})
3230, 31ax-mp 5 . . 3 (℩𝑥(𝑥𝑦𝜑)) = {𝑥 ∣ (𝑥𝑦𝜑)}
3327, 32bdceqir 16207 . 2 BOUNDED (℩𝑥(𝑥𝑦𝜑))
34 df-riota 5954 . 2 (𝑥𝑦 𝜑) = (℩𝑥(𝑥𝑦𝜑))
3533, 34bdceqir 16207 1 BOUNDED (𝑥𝑦 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1393   = wceq 1395  [wsb 1808  ∃!weu 2077  wcel 2200  {cab 2215  wral 2508  ∃!wreu 2510   cint 3923  cio 5276  crio 5953  BOUNDED wbd 16175  BOUNDED wbdc 16203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bd0 16176  ax-bdim 16177  ax-bdal 16181  ax-bdel 16184  ax-bdsb 16185
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-sn 3672  df-pr 3673  df-uni 3889  df-int 3924  df-iota 5278  df-riota 5954  df-bdc 16204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator