Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcriota GIF version

Theorem bdcriota 16018
Description: A class given by a restricted definition binder is bounded, under the given hypotheses. (Contributed by BJ, 24-Nov-2019.)
Hypotheses
Ref Expression
bdcriota.bd BOUNDED 𝜑
bdcriota.ex ∃!𝑥𝑦 𝜑
Assertion
Ref Expression
bdcriota BOUNDED (𝑥𝑦 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bdcriota
Dummy variables 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdcriota.bd . . . . . . . . 9 BOUNDED 𝜑
21ax-bdsb 15957 . . . . . . . 8 BOUNDED [𝑧 / 𝑥]𝜑
3 ax-bdel 15956 . . . . . . . 8 BOUNDED 𝑡𝑧
42, 3ax-bdim 15949 . . . . . . 7 BOUNDED ([𝑧 / 𝑥]𝜑𝑡𝑧)
54ax-bdal 15953 . . . . . 6 BOUNDED𝑧𝑦 ([𝑧 / 𝑥]𝜑𝑡𝑧)
6 df-ral 2491 . . . . . . . . 9 (∀𝑧𝑦 ([𝑧 / 𝑥]𝜑𝑡𝑧) ↔ ∀𝑧(𝑧𝑦 → ([𝑧 / 𝑥]𝜑𝑡𝑧)))
7 impexp 263 . . . . . . . . . . 11 (((𝑧𝑦 ∧ [𝑧 / 𝑥]𝜑) → 𝑡𝑧) ↔ (𝑧𝑦 → ([𝑧 / 𝑥]𝜑𝑡𝑧)))
87bicomi 132 . . . . . . . . . 10 ((𝑧𝑦 → ([𝑧 / 𝑥]𝜑𝑡𝑧)) ↔ ((𝑧𝑦 ∧ [𝑧 / 𝑥]𝜑) → 𝑡𝑧))
98albii 1494 . . . . . . . . 9 (∀𝑧(𝑧𝑦 → ([𝑧 / 𝑥]𝜑𝑡𝑧)) ↔ ∀𝑧((𝑧𝑦 ∧ [𝑧 / 𝑥]𝜑) → 𝑡𝑧))
106, 9bitri 184 . . . . . . . 8 (∀𝑧𝑦 ([𝑧 / 𝑥]𝜑𝑡𝑧) ↔ ∀𝑧((𝑧𝑦 ∧ [𝑧 / 𝑥]𝜑) → 𝑡𝑧))
11 sban 1984 . . . . . . . . . . . 12 ([𝑧 / 𝑥](𝑥𝑦𝜑) ↔ ([𝑧 / 𝑥]𝑥𝑦 ∧ [𝑧 / 𝑥]𝜑))
12 clelsb1 2312 . . . . . . . . . . . . 13 ([𝑧 / 𝑥]𝑥𝑦𝑧𝑦)
1312anbi1i 458 . . . . . . . . . . . 12 (([𝑧 / 𝑥]𝑥𝑦 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑧𝑦 ∧ [𝑧 / 𝑥]𝜑))
1411, 13bitri 184 . . . . . . . . . . 11 ([𝑧 / 𝑥](𝑥𝑦𝜑) ↔ (𝑧𝑦 ∧ [𝑧 / 𝑥]𝜑))
1514bicomi 132 . . . . . . . . . 10 ((𝑧𝑦 ∧ [𝑧 / 𝑥]𝜑) ↔ [𝑧 / 𝑥](𝑥𝑦𝜑))
1615imbi1i 238 . . . . . . . . 9 (((𝑧𝑦 ∧ [𝑧 / 𝑥]𝜑) → 𝑡𝑧) ↔ ([𝑧 / 𝑥](𝑥𝑦𝜑) → 𝑡𝑧))
1716albii 1494 . . . . . . . 8 (∀𝑧((𝑧𝑦 ∧ [𝑧 / 𝑥]𝜑) → 𝑡𝑧) ↔ ∀𝑧([𝑧 / 𝑥](𝑥𝑦𝜑) → 𝑡𝑧))
1810, 17bitri 184 . . . . . . 7 (∀𝑧𝑦 ([𝑧 / 𝑥]𝜑𝑡𝑧) ↔ ∀𝑧([𝑧 / 𝑥](𝑥𝑦𝜑) → 𝑡𝑧))
19 df-clab 2194 . . . . . . . . . 10 (𝑧 ∈ {𝑥 ∣ (𝑥𝑦𝜑)} ↔ [𝑧 / 𝑥](𝑥𝑦𝜑))
2019bicomi 132 . . . . . . . . 9 ([𝑧 / 𝑥](𝑥𝑦𝜑) ↔ 𝑧 ∈ {𝑥 ∣ (𝑥𝑦𝜑)})
2120imbi1i 238 . . . . . . . 8 (([𝑧 / 𝑥](𝑥𝑦𝜑) → 𝑡𝑧) ↔ (𝑧 ∈ {𝑥 ∣ (𝑥𝑦𝜑)} → 𝑡𝑧))
2221albii 1494 . . . . . . 7 (∀𝑧([𝑧 / 𝑥](𝑥𝑦𝜑) → 𝑡𝑧) ↔ ∀𝑧(𝑧 ∈ {𝑥 ∣ (𝑥𝑦𝜑)} → 𝑡𝑧))
2318, 22bitri 184 . . . . . 6 (∀𝑧𝑦 ([𝑧 / 𝑥]𝜑𝑡𝑧) ↔ ∀𝑧(𝑧 ∈ {𝑥 ∣ (𝑥𝑦𝜑)} → 𝑡𝑧))
245, 23bd0 15959 . . . . 5 BOUNDED𝑧(𝑧 ∈ {𝑥 ∣ (𝑥𝑦𝜑)} → 𝑡𝑧)
2524bdcab 15984 . . . 4 BOUNDED {𝑡 ∣ ∀𝑧(𝑧 ∈ {𝑥 ∣ (𝑥𝑦𝜑)} → 𝑡𝑧)}
26 df-int 3900 . . . 4 {𝑥 ∣ (𝑥𝑦𝜑)} = {𝑡 ∣ ∀𝑧(𝑧 ∈ {𝑥 ∣ (𝑥𝑦𝜑)} → 𝑡𝑧)}
2725, 26bdceqir 15979 . . 3 BOUNDED {𝑥 ∣ (𝑥𝑦𝜑)}
28 bdcriota.ex . . . . 5 ∃!𝑥𝑦 𝜑
29 df-reu 2493 . . . . 5 (∃!𝑥𝑦 𝜑 ↔ ∃!𝑥(𝑥𝑦𝜑))
3028, 29mpbi 145 . . . 4 ∃!𝑥(𝑥𝑦𝜑)
31 iotaint 5264 . . . 4 (∃!𝑥(𝑥𝑦𝜑) → (℩𝑥(𝑥𝑦𝜑)) = {𝑥 ∣ (𝑥𝑦𝜑)})
3230, 31ax-mp 5 . . 3 (℩𝑥(𝑥𝑦𝜑)) = {𝑥 ∣ (𝑥𝑦𝜑)}
3327, 32bdceqir 15979 . 2 BOUNDED (℩𝑥(𝑥𝑦𝜑))
34 df-riota 5922 . 2 (𝑥𝑦 𝜑) = (℩𝑥(𝑥𝑦𝜑))
3533, 34bdceqir 15979 1 BOUNDED (𝑥𝑦 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1371   = wceq 1373  [wsb 1786  ∃!weu 2055  wcel 2178  {cab 2193  wral 2486  ∃!wreu 2488   cint 3899  cio 5249  crio 5921  BOUNDED wbd 15947  BOUNDED wbdc 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-bd0 15948  ax-bdim 15949  ax-bdal 15953  ax-bdel 15956  ax-bdsb 15957
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-iota 5251  df-riota 5922  df-bdc 15976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator