Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdph GIF version

Theorem bdph 16123
Description: A formula which defines (by class abstraction) a bounded class is bounded. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdph.1 BOUNDED {𝑥𝜑}
Assertion
Ref Expression
bdph BOUNDED 𝜑

Proof of Theorem bdph
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bdph.1 . . . . 5 BOUNDED {𝑥𝜑}
21bdeli 16119 . . . 4 BOUNDED 𝑦 ∈ {𝑥𝜑}
3 df-clab 2196 . . . 4 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
42, 3bd0 16097 . . 3 BOUNDED [𝑦 / 𝑥]𝜑
54ax-bdsb 16095 . 2 BOUNDED [𝑥 / 𝑦][𝑦 / 𝑥]𝜑
6 sbid2v 2027 . 2 ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑𝜑)
75, 6bd0 16097 1 BOUNDED 𝜑
Colors of variables: wff set class
Syntax hints:  [wsb 1788  wcel 2180  {cab 2195  BOUNDED wbd 16085  BOUNDED wbdc 16113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1473  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-11 1532  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-bd0 16086  ax-bdsb 16095
This theorem depends on definitions:  df-bi 117  df-sb 1789  df-clab 2196  df-bdc 16114
This theorem is referenced by:  bds  16124
  Copyright terms: Public domain W3C validator