Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdph GIF version

Theorem bdph 13885
Description: A formula which defines (by class abstraction) a bounded class is bounded. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdph.1 BOUNDED {𝑥𝜑}
Assertion
Ref Expression
bdph BOUNDED 𝜑

Proof of Theorem bdph
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bdph.1 . . . . 5 BOUNDED {𝑥𝜑}
21bdeli 13881 . . . 4 BOUNDED 𝑦 ∈ {𝑥𝜑}
3 df-clab 2157 . . . 4 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
42, 3bd0 13859 . . 3 BOUNDED [𝑦 / 𝑥]𝜑
54ax-bdsb 13857 . 2 BOUNDED [𝑥 / 𝑦][𝑦 / 𝑥]𝜑
6 sbid2v 1989 . 2 ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑𝜑)
75, 6bd0 13859 1 BOUNDED 𝜑
Colors of variables: wff set class
Syntax hints:  [wsb 1755  wcel 2141  {cab 2156  BOUNDED wbd 13847  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-bd0 13848  ax-bdsb 13857
This theorem depends on definitions:  df-bi 116  df-sb 1756  df-clab 2157  df-bdc 13876
This theorem is referenced by:  bds  13886
  Copyright terms: Public domain W3C validator