Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdph GIF version

Theorem bdph 15496
Description: A formula which defines (by class abstraction) a bounded class is bounded. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdph.1 BOUNDED {𝑥𝜑}
Assertion
Ref Expression
bdph BOUNDED 𝜑

Proof of Theorem bdph
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bdph.1 . . . . 5 BOUNDED {𝑥𝜑}
21bdeli 15492 . . . 4 BOUNDED 𝑦 ∈ {𝑥𝜑}
3 df-clab 2183 . . . 4 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
42, 3bd0 15470 . . 3 BOUNDED [𝑦 / 𝑥]𝜑
54ax-bdsb 15468 . 2 BOUNDED [𝑥 / 𝑦][𝑦 / 𝑥]𝜑
6 sbid2v 2015 . 2 ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑𝜑)
75, 6bd0 15470 1 BOUNDED 𝜑
Colors of variables: wff set class
Syntax hints:  [wsb 1776  wcel 2167  {cab 2182  BOUNDED wbd 15458  BOUNDED wbdc 15486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-bd0 15459  ax-bdsb 15468
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-bdc 15487
This theorem is referenced by:  bds  15497
  Copyright terms: Public domain W3C validator