ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sb GIF version

Definition df-sb 1751
Description: Define proper substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). For our notation, we use [𝑦 / 𝑥]𝜑 to mean "the wff that results when 𝑦 is properly substituted for 𝑥 in the wff 𝜑". We can also use [𝑦 / 𝑥]𝜑 in place of the "free for" side condition used in traditional predicate calculus; see, for example, stdpc4 1763.

Our notation was introduced in Haskell B. Curry's Foundations of Mathematical Logic (1977), p. 316 and is frequently used in textbooks of lambda calculus and combinatory logic. This notation improves the common but ambiguous notation, "𝜑(𝑦) is the wff that results when 𝑦 is properly substituted for 𝑥 in 𝜑(𝑥)". For example, if the original 𝜑(𝑥) is 𝑥 = 𝑦, then 𝜑(𝑦) is 𝑦 = 𝑦, from which we obtain that 𝜑(𝑥) is 𝑥 = 𝑥. So what exactly does 𝜑(𝑥) mean? Curry's notation solves this problem.

In most books, proper substitution has a somewhat complicated recursive definition with multiple cases based on the occurrences of free and bound variables in the wff. Instead, we use a single formula that is exactly equivalent and gives us a direct definition. We later prove that our definition has the properties we expect of proper substitution (see Theorems sbequ 1828, sbcom2 1975 and sbid2v 1984).

Note that our definition is valid even when 𝑥 and 𝑦 are replaced with the same variable, as sbid 1762 shows. We achieve this by having 𝑥 free in the first conjunct and bound in the second. We can also achieve this by using a dummy variable, as the alternate definition dfsb7 1979 shows (which some logicians may prefer because it doesn't mix free and bound variables). Another alternate definition which uses a dummy variable is dfsb7a 1982.

When 𝑥 and 𝑦 are distinct, we can express proper substitution with the simpler expressions of sb5 1875 and sb6 1874.

In classical logic, another possible definition is (𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑) but we do not have an intuitionistic proof that this is equivalent.

There are no restrictions on any of the variables, including what variables may occur in wff 𝜑. (Contributed by NM, 5-Aug-1993.)

Assertion
Ref Expression
df-sb ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))

Detailed syntax breakdown of Definition df-sb
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
41, 2, 3wsb 1750 . 2 wff [𝑦 / 𝑥]𝜑
52, 3weq 1491 . . . 4 wff 𝑥 = 𝑦
65, 1wi 4 . . 3 wff (𝑥 = 𝑦𝜑)
75, 1wa 103 . . . 4 wff (𝑥 = 𝑦𝜑)
87, 2wex 1480 . . 3 wff 𝑥(𝑥 = 𝑦𝜑)
96, 8wa 103 . 2 wff ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑))
104, 9wb 104 1 wff ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff set class
This definition is referenced by:  sbimi  1752  sb1  1754  sb2  1755  sbequ1  1756  sbequ2  1757  drsb1  1787  spsbim  1831  sbequ8  1835  sbidm  1839  sb6  1874  hbsbv  1929  nfsbv  1935
  Copyright terms: Public domain W3C validator