ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sb GIF version

Definition df-sb 1756
Description: Define proper substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). For our notation, we use [𝑦 / 𝑥]𝜑 to mean "the wff that results when 𝑦 is properly substituted for 𝑥 in the wff 𝜑". We can also use [𝑦 / 𝑥]𝜑 in place of the "free for" side condition used in traditional predicate calculus; see, for example, stdpc4 1768.

Our notation was introduced in Haskell B. Curry's Foundations of Mathematical Logic (1977), p. 316 and is frequently used in textbooks of lambda calculus and combinatory logic. This notation improves the common but ambiguous notation, "𝜑(𝑦) is the wff that results when 𝑦 is properly substituted for 𝑥 in 𝜑(𝑥)". For example, if the original 𝜑(𝑥) is 𝑥 = 𝑦, then 𝜑(𝑦) is 𝑦 = 𝑦, from which we obtain that 𝜑(𝑥) is 𝑥 = 𝑥. So what exactly does 𝜑(𝑥) mean? Curry's notation solves this problem.

In most books, proper substitution has a somewhat complicated recursive definition with multiple cases based on the occurrences of free and bound variables in the wff. Instead, we use a single formula that is exactly equivalent and gives us a direct definition. We later prove that our definition has the properties we expect of proper substitution (see Theorems sbequ 1833, sbcom2 1980 and sbid2v 1989).

Note that our definition is valid even when 𝑥 and 𝑦 are replaced with the same variable, as sbid 1767 shows. We achieve this by having 𝑥 free in the first conjunct and bound in the second. We can also achieve this by using a dummy variable, as the alternate definition dfsb7 1984 shows (which some logicians may prefer because it doesn't mix free and bound variables). Another alternate definition which uses a dummy variable is dfsb7a 1987.

When 𝑥 and 𝑦 are distinct, we can express proper substitution with the simpler expressions of sb5 1880 and sb6 1879.

In classical logic, another possible definition is (𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑) but we do not have an intuitionistic proof that this is equivalent.

There are no restrictions on any of the variables, including what variables may occur in wff 𝜑. (Contributed by NM, 5-Aug-1993.)

Assertion
Ref Expression
df-sb ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))

Detailed syntax breakdown of Definition df-sb
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
41, 2, 3wsb 1755 . 2 wff [𝑦 / 𝑥]𝜑
52, 3weq 1496 . . . 4 wff 𝑥 = 𝑦
65, 1wi 4 . . 3 wff (𝑥 = 𝑦𝜑)
75, 1wa 103 . . . 4 wff (𝑥 = 𝑦𝜑)
87, 2wex 1485 . . 3 wff 𝑥(𝑥 = 𝑦𝜑)
96, 8wa 103 . 2 wff ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑))
104, 9wb 104 1 wff ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff set class
This definition is referenced by:  sbimi  1757  sb1  1759  sb2  1760  sbequ1  1761  sbequ2  1762  drsb1  1792  spsbim  1836  sbequ8  1840  sbidm  1844  sb6  1879  hbsbv  1934  nfsbv  1940
  Copyright terms: Public domain W3C validator