Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeq GIF version

Theorem bdeq 13858
Description: Equality property for the predicate BOUNDED. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdeq.1 (𝜑𝜓)
Assertion
Ref Expression
bdeq (BOUNDED 𝜑BOUNDED 𝜓)

Proof of Theorem bdeq
StepHypRef Expression
1 bdeq.1 . . 3 (𝜑𝜓)
21ax-bd0 13848 . 2 (BOUNDED 𝜑BOUNDED 𝜓)
31bicomi 131 . . 3 (𝜓𝜑)
43ax-bd0 13848 . 2 (BOUNDED 𝜓BOUNDED 𝜑)
52, 4impbii 125 1 (BOUNDED 𝜑BOUNDED 𝜓)
Colors of variables: wff set class
Syntax hints:  wb 104  BOUNDED wbd 13847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-bd0 13848
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bdceq  13877
  Copyright terms: Public domain W3C validator