Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsbc GIF version

Theorem bdsbc 16245
Description: A formula resulting from proper substitution of a setvar for a setvar in a bounded formula is bounded. See also bdsbcALT 16246. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdcsbc.1 BOUNDED 𝜑
Assertion
Ref Expression
bdsbc BOUNDED [𝑦 / 𝑥]𝜑

Proof of Theorem bdsbc
StepHypRef Expression
1 bdcsbc.1 . . 3 BOUNDED 𝜑
21ax-bdsb 16209 . 2 BOUNDED [𝑦 / 𝑥]𝜑
3 sbsbc 3032 . 2 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
42, 3bd0 16211 1 BOUNDED [𝑦 / 𝑥]𝜑
Colors of variables: wff set class
Syntax hints:  [wsb 1808  [wsbc 3028  BOUNDED wbd 16199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211  ax-bd0 16200  ax-bdsb 16209
This theorem depends on definitions:  df-bi 117  df-clab 2216  df-cleq 2222  df-clel 2225  df-sbc 3029
This theorem is referenced by:  bdccsb  16247
  Copyright terms: Public domain W3C validator