Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsbc GIF version

Theorem bdsbc 15868
Description: A formula resulting from proper substitution of a setvar for a setvar in a bounded formula is bounded. See also bdsbcALT 15869. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdcsbc.1 BOUNDED 𝜑
Assertion
Ref Expression
bdsbc BOUNDED [𝑦 / 𝑥]𝜑

Proof of Theorem bdsbc
StepHypRef Expression
1 bdcsbc.1 . . 3 BOUNDED 𝜑
21ax-bdsb 15832 . 2 BOUNDED [𝑦 / 𝑥]𝜑
3 sbsbc 3003 . 2 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
42, 3bd0 15834 1 BOUNDED [𝑦 / 𝑥]𝜑
Colors of variables: wff set class
Syntax hints:  [wsb 1786  [wsbc 2999  BOUNDED wbd 15822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2188  ax-bd0 15823  ax-bdsb 15832
This theorem depends on definitions:  df-bi 117  df-clab 2193  df-cleq 2199  df-clel 2202  df-sbc 3000
This theorem is referenced by:  bdccsb  15870
  Copyright terms: Public domain W3C validator