Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsbc GIF version

Theorem bdsbc 13700
Description: A formula resulting from proper substitution of a setvar for a setvar in a bounded formula is bounded. See also bdsbcALT 13701. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdcsbc.1 BOUNDED 𝜑
Assertion
Ref Expression
bdsbc BOUNDED [𝑦 / 𝑥]𝜑

Proof of Theorem bdsbc
StepHypRef Expression
1 bdcsbc.1 . . 3 BOUNDED 𝜑
21ax-bdsb 13664 . 2 BOUNDED [𝑦 / 𝑥]𝜑
3 sbsbc 2954 . 2 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
42, 3bd0 13666 1 BOUNDED [𝑦 / 𝑥]𝜑
Colors of variables: wff set class
Syntax hints:  [wsb 1750  [wsbc 2950  BOUNDED wbd 13654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147  ax-bd0 13655  ax-bdsb 13664
This theorem depends on definitions:  df-bi 116  df-clab 2152  df-cleq 2158  df-clel 2161  df-sbc 2951
This theorem is referenced by:  bdccsb  13702
  Copyright terms: Public domain W3C validator