Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsep1 | GIF version |
Description: Version of ax-bdsep 13919 without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.) |
Ref | Expression |
---|---|
bdsep1.1 | ⊢ BOUNDED 𝜑 |
Ref | Expression |
---|---|
bdsep1 | ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdsep1.1 | . . 3 ⊢ BOUNDED 𝜑 | |
2 | 1 | ax-bdsep 13919 | . 2 ⊢ ∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
3 | 2 | spi 1529 | 1 ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∀wal 1346 ∃wex 1485 BOUNDED wbd 13847 |
This theorem was proved from axioms: ax-mp 5 ax-4 1503 ax-bdsep 13919 |
This theorem is referenced by: bdsep2 13921 bdzfauscl 13925 bdbm1.3ii 13926 bj-axemptylem 13927 bj-nalset 13930 |
Copyright terms: Public domain | W3C validator |