Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsep1 GIF version

Theorem bdsep1 16248
Description: Version of ax-bdsep 16247 without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.)
Hypothesis
Ref Expression
bdsep1.1 BOUNDED 𝜑
Assertion
Ref Expression
bdsep1 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
Distinct variable groups:   𝑎,𝑏,𝑥   𝜑,𝑎,𝑏
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bdsep1
StepHypRef Expression
1 bdsep1.1 . . 3 BOUNDED 𝜑
21ax-bdsep 16247 . 2 𝑎𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
32spi 1582 1 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1393  wex 1538  BOUNDED wbd 16175
This theorem was proved from axioms:  ax-mp 5  ax-4 1556  ax-bdsep 16247
This theorem is referenced by:  bdsep2  16249  bdzfauscl  16253  bdbm1.3ii  16254  bj-axemptylem  16255  bj-nalset  16258
  Copyright terms: Public domain W3C validator