Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsep1 GIF version

Theorem bdsep1 15615
Description: Version of ax-bdsep 15614 without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.)
Hypothesis
Ref Expression
bdsep1.1 BOUNDED 𝜑
Assertion
Ref Expression
bdsep1 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
Distinct variable groups:   𝑎,𝑏,𝑥   𝜑,𝑎,𝑏
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bdsep1
StepHypRef Expression
1 bdsep1.1 . . 3 BOUNDED 𝜑
21ax-bdsep 15614 . 2 𝑎𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
32spi 1550 1 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1362  wex 1506  BOUNDED wbd 15542
This theorem was proved from axioms:  ax-mp 5  ax-4 1524  ax-bdsep 15614
This theorem is referenced by:  bdsep2  15616  bdzfauscl  15620  bdbm1.3ii  15621  bj-axemptylem  15622  bj-nalset  15625
  Copyright terms: Public domain W3C validator