| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsep1 | GIF version | ||
| Description: Version of ax-bdsep 15820 without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdsep1.1 | ⊢ BOUNDED 𝜑 |
| Ref | Expression |
|---|---|
| bdsep1 | ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdsep1.1 | . . 3 ⊢ BOUNDED 𝜑 | |
| 2 | 1 | ax-bdsep 15820 | . 2 ⊢ ∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| 3 | 2 | spi 1559 | 1 ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1371 ∃wex 1515 BOUNDED wbd 15748 |
| This theorem was proved from axioms: ax-mp 5 ax-4 1533 ax-bdsep 15820 |
| This theorem is referenced by: bdsep2 15822 bdzfauscl 15826 bdbm1.3ii 15827 bj-axemptylem 15828 bj-nalset 15831 |
| Copyright terms: Public domain | W3C validator |