ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-sep GIF version

Axiom ax-sep 4099
Description: The Axiom of Separation of IZF set theory. Axiom 6 of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed, and with a 𝑦𝜑 condition replaced by a disjoint variable condition between 𝑦 and 𝜑).

The Separation Scheme is a weak form of Frege's Axiom of Comprehension, conditioning it (with 𝑥𝑧) so that it asserts the existence of a collection only if it is smaller than some other collection 𝑧 that already exists. This prevents Russell's paradox ru 2949. In some texts, this scheme is called "Aussonderung" or the Subset Axiom.

(Contributed by NM, 11-Sep-2006.)

Assertion
Ref Expression
ax-sep 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑦,𝑧
Allowed substitution hint:   𝜑(𝑥)

Detailed syntax breakdown of Axiom ax-sep
StepHypRef Expression
1 vx . . . . 5 setvar 𝑥
2 vy . . . . 5 setvar 𝑦
31, 2wel 2137 . . . 4 wff 𝑥𝑦
4 vz . . . . . 6 setvar 𝑧
51, 4wel 2137 . . . . 5 wff 𝑥𝑧
6 wph . . . . 5 wff 𝜑
75, 6wa 103 . . . 4 wff (𝑥𝑧𝜑)
83, 7wb 104 . . 3 wff (𝑥𝑦 ↔ (𝑥𝑧𝜑))
98, 1wal 1341 . 2 wff 𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
109, 2wex 1480 1 wff 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
Colors of variables: wff set class
This axiom is referenced by:  axsep2  4100  zfauscl  4101  bm1.3ii  4102  a9evsep  4103  axnul  4106  nalset  4111
  Copyright terms: Public domain W3C validator