| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-i2m1 | GIF version | ||
| Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, justified by Theorem axi2m1 7995. (Contributed by NM, 29-Jan-1995.) |
| Ref | Expression |
|---|---|
| ax-i2m1 | ⊢ ((i · i) + 1) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ci 7934 | . . . 4 class i | |
| 2 | cmul 7937 | . . . 4 class · | |
| 3 | 1, 1, 2 | co 5951 | . . 3 class (i · i) |
| 4 | c1 7933 | . . 3 class 1 | |
| 5 | caddc 7935 | . . 3 class + | |
| 6 | 3, 4, 5 | co 5951 | . 2 class ((i · i) + 1) |
| 7 | cc0 7932 | . 2 class 0 | |
| 8 | 6, 7 | wceq 1373 | 1 wff ((i · i) + 1) = 0 |
| Colors of variables: wff set class |
| This axiom is referenced by: 0cn 8071 ine0 8473 ixi 8663 inelr 8664 |
| Copyright terms: Public domain | W3C validator |