Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-i2m1 | GIF version |
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, justified by Theorem axi2m1 7795. (Contributed by NM, 29-Jan-1995.) |
Ref | Expression |
---|---|
ax-i2m1 | ⊢ ((i · i) + 1) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 7734 | . . . 4 class i | |
2 | cmul 7737 | . . . 4 class · | |
3 | 1, 1, 2 | co 5824 | . . 3 class (i · i) |
4 | c1 7733 | . . 3 class 1 | |
5 | caddc 7735 | . . 3 class + | |
6 | 3, 4, 5 | co 5824 | . 2 class ((i · i) + 1) |
7 | cc0 7732 | . 2 class 0 | |
8 | 6, 7 | wceq 1335 | 1 wff ((i · i) + 1) = 0 |
Colors of variables: wff set class |
This axiom is referenced by: 0cn 7870 ine0 8269 ixi 8458 inelr 8459 |
Copyright terms: Public domain | W3C validator |