| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ine0 | GIF version | ||
| Description: The imaginary unit i is not zero. (Contributed by NM, 6-May-1999.) |
| Ref | Expression |
|---|---|
| ine0 | ⊢ i ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8026 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 2 | 0lt1 8153 | . . . . 5 ⊢ 0 < 1 | |
| 3 | 1, 2 | gtneii 8122 | . . . 4 ⊢ 1 ≠ 0 |
| 4 | 3 | neii 2369 | . . 3 ⊢ ¬ 1 = 0 |
| 5 | oveq2 5930 | . . . . . 6 ⊢ (i = 0 → (i · i) = (i · 0)) | |
| 6 | ax-icn 7974 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 7 | 6 | mul01i 8417 | . . . . . 6 ⊢ (i · 0) = 0 |
| 8 | 5, 7 | eqtr2di 2246 | . . . . 5 ⊢ (i = 0 → 0 = (i · i)) |
| 9 | 8 | oveq1d 5937 | . . . 4 ⊢ (i = 0 → (0 + 1) = ((i · i) + 1)) |
| 10 | ax-1cn 7972 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 11 | 10 | addlidi 8169 | . . . 4 ⊢ (0 + 1) = 1 |
| 12 | ax-i2m1 7984 | . . . 4 ⊢ ((i · i) + 1) = 0 | |
| 13 | 9, 11, 12 | 3eqtr3g 2252 | . . 3 ⊢ (i = 0 → 1 = 0) |
| 14 | 4, 13 | mto 663 | . 2 ⊢ ¬ i = 0 |
| 15 | 14 | neir 2370 | 1 ⊢ i ≠ 0 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ≠ wne 2367 (class class class)co 5922 0cc0 7879 1c1 7880 ici 7881 + caddc 7882 · cmul 7884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-sub 8199 |
| This theorem is referenced by: inelr 8611 |
| Copyright terms: Public domain | W3C validator |