| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ine0 | GIF version | ||
| Description: The imaginary unit i is not zero. (Contributed by NM, 6-May-1999.) |
| Ref | Expression |
|---|---|
| ine0 | ⊢ i ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8142 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 2 | 0lt1 8269 | . . . . 5 ⊢ 0 < 1 | |
| 3 | 1, 2 | gtneii 8238 | . . . 4 ⊢ 1 ≠ 0 |
| 4 | 3 | neii 2402 | . . 3 ⊢ ¬ 1 = 0 |
| 5 | oveq2 6008 | . . . . . 6 ⊢ (i = 0 → (i · i) = (i · 0)) | |
| 6 | ax-icn 8090 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 7 | 6 | mul01i 8533 | . . . . . 6 ⊢ (i · 0) = 0 |
| 8 | 5, 7 | eqtr2di 2279 | . . . . 5 ⊢ (i = 0 → 0 = (i · i)) |
| 9 | 8 | oveq1d 6015 | . . . 4 ⊢ (i = 0 → (0 + 1) = ((i · i) + 1)) |
| 10 | ax-1cn 8088 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 11 | 10 | addlidi 8285 | . . . 4 ⊢ (0 + 1) = 1 |
| 12 | ax-i2m1 8100 | . . . 4 ⊢ ((i · i) + 1) = 0 | |
| 13 | 9, 11, 12 | 3eqtr3g 2285 | . . 3 ⊢ (i = 0 → 1 = 0) |
| 14 | 4, 13 | mto 666 | . 2 ⊢ ¬ i = 0 |
| 15 | 14 | neir 2403 | 1 ⊢ i ≠ 0 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ≠ wne 2400 (class class class)co 6000 0cc0 7995 1c1 7996 ici 7997 + caddc 7998 · cmul 8000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-sub 8315 |
| This theorem is referenced by: inelr 8727 |
| Copyright terms: Public domain | W3C validator |