| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ine0 | GIF version | ||
| Description: The imaginary unit i is not zero. (Contributed by NM, 6-May-1999.) |
| Ref | Expression |
|---|---|
| ine0 | ⊢ i ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8071 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 2 | 0lt1 8198 | . . . . 5 ⊢ 0 < 1 | |
| 3 | 1, 2 | gtneii 8167 | . . . 4 ⊢ 1 ≠ 0 |
| 4 | 3 | neii 2377 | . . 3 ⊢ ¬ 1 = 0 |
| 5 | oveq2 5951 | . . . . . 6 ⊢ (i = 0 → (i · i) = (i · 0)) | |
| 6 | ax-icn 8019 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 7 | 6 | mul01i 8462 | . . . . . 6 ⊢ (i · 0) = 0 |
| 8 | 5, 7 | eqtr2di 2254 | . . . . 5 ⊢ (i = 0 → 0 = (i · i)) |
| 9 | 8 | oveq1d 5958 | . . . 4 ⊢ (i = 0 → (0 + 1) = ((i · i) + 1)) |
| 10 | ax-1cn 8017 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 11 | 10 | addlidi 8214 | . . . 4 ⊢ (0 + 1) = 1 |
| 12 | ax-i2m1 8029 | . . . 4 ⊢ ((i · i) + 1) = 0 | |
| 13 | 9, 11, 12 | 3eqtr3g 2260 | . . 3 ⊢ (i = 0 → 1 = 0) |
| 14 | 4, 13 | mto 663 | . 2 ⊢ ¬ i = 0 |
| 15 | 14 | neir 2378 | 1 ⊢ i ≠ 0 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ≠ wne 2375 (class class class)co 5943 0cc0 7924 1c1 7925 ici 7926 + caddc 7927 · cmul 7929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-sub 8244 |
| This theorem is referenced by: inelr 8656 |
| Copyright terms: Public domain | W3C validator |