| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0cn | GIF version | ||
| Description: 0 is a complex number. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| 0cn | ⊢ 0 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i2m1 8012 | . 2 ⊢ ((i · i) + 1) = 0 | |
| 2 | ax-icn 8002 | . . . 4 ⊢ i ∈ ℂ | |
| 3 | mulcl 8034 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
| 4 | 2, 2, 3 | mp2an 426 | . . 3 ⊢ (i · i) ∈ ℂ |
| 5 | ax-1cn 8000 | . . 3 ⊢ 1 ∈ ℂ | |
| 6 | addcl 8032 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
| 7 | 4, 5, 6 | mp2an 426 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
| 8 | 1, 7 | eqeltrri 2278 | 1 ⊢ 0 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 (class class class)co 5934 ℂcc 7905 0cc0 7907 1c1 7908 ici 7909 + caddc 7910 · cmul 7912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 ax-1cn 8000 ax-icn 8002 ax-addcl 8003 ax-mulcl 8005 ax-i2m1 8012 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: 0cnd 8047 c0ex 8048 addlid 8193 00id 8195 cnegexlem2 8230 negcl 8254 subid 8273 subid1 8274 neg0 8300 negid 8301 negsub 8302 subneg 8303 negneg 8304 negeq0 8308 negsubdi 8310 renegcl 8315 mul02 8441 mul01 8443 mulneg1 8449 ixi 8638 negap0 8685 muleqadd 8723 divvalap 8729 div0ap 8757 recgt0 8905 0m0e0 9130 2muline0 9244 elznn0 9369 ser0 10659 0exp0e1 10670 expeq0 10696 0exp 10700 sq0 10756 bcval5 10889 shftval3 11057 shftidt2 11062 cjap0 11137 cjne0 11138 abs0 11288 abs2dif 11336 clim0 11515 climz 11522 serclim0 11535 sumrbdclem 11607 fsum3cvg 11608 summodclem3 11610 summodclem2a 11611 fisumss 11622 fsumrelem 11701 ef0 11902 eftlub 11920 sin0 11959 tan0 11961 4sqlem11 12643 cncrng 14249 cnfld0 14251 cnbl0 14924 cnblcld 14925 dvconst 15084 dvconstre 15086 dvconstss 15088 dvcnp2cntop 15089 dvrecap 15103 dveflem 15116 plyun0 15126 plycjlemc 15150 plycj 15151 dvply2g 15156 sinhalfpilem 15181 sin2kpi 15201 cos2kpi 15202 sinkpi 15237 1sgm2ppw 15385 dcapnconst 15864 |
| Copyright terms: Public domain | W3C validator |