| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0cn | GIF version | ||
| Description: 0 is a complex number. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| 0cn | ⊢ 0 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i2m1 8050 | . 2 ⊢ ((i · i) + 1) = 0 | |
| 2 | ax-icn 8040 | . . . 4 ⊢ i ∈ ℂ | |
| 3 | mulcl 8072 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
| 4 | 2, 2, 3 | mp2an 426 | . . 3 ⊢ (i · i) ∈ ℂ |
| 5 | ax-1cn 8038 | . . 3 ⊢ 1 ∈ ℂ | |
| 6 | addcl 8070 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
| 7 | 4, 5, 6 | mp2an 426 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
| 8 | 1, 7 | eqeltrri 2280 | 1 ⊢ 0 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 (class class class)co 5957 ℂcc 7943 0cc0 7945 1c1 7946 ici 7947 + caddc 7948 · cmul 7950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2188 ax-1cn 8038 ax-icn 8040 ax-addcl 8041 ax-mulcl 8043 ax-i2m1 8050 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-clel 2202 |
| This theorem is referenced by: 0cnd 8085 c0ex 8086 addlid 8231 00id 8233 cnegexlem2 8268 negcl 8292 subid 8311 subid1 8312 neg0 8338 negid 8339 negsub 8340 subneg 8341 negneg 8342 negeq0 8346 negsubdi 8348 renegcl 8353 mul02 8479 mul01 8481 mulneg1 8487 ixi 8676 negap0 8723 muleqadd 8761 divvalap 8767 div0ap 8795 recgt0 8943 0m0e0 9168 2muline0 9282 elznn0 9407 ser0 10700 0exp0e1 10711 expeq0 10737 0exp 10741 sq0 10797 bcval5 10930 shftval3 11213 shftidt2 11218 cjap0 11293 cjne0 11294 abs0 11444 abs2dif 11492 clim0 11671 climz 11678 serclim0 11691 sumrbdclem 11763 fsum3cvg 11764 summodclem3 11766 summodclem2a 11767 fisumss 11778 fsumrelem 11857 ef0 12058 eftlub 12076 sin0 12115 tan0 12117 4sqlem11 12799 cncrng 14406 cnfld0 14408 cnbl0 15081 cnblcld 15082 dvconst 15241 dvconstre 15243 dvconstss 15245 dvcnp2cntop 15246 dvrecap 15260 dveflem 15273 plyun0 15283 plycjlemc 15307 plycj 15308 dvply2g 15313 sinhalfpilem 15338 sin2kpi 15358 cos2kpi 15359 sinkpi 15394 1sgm2ppw 15542 dcapnconst 16141 |
| Copyright terms: Public domain | W3C validator |