![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0cn | GIF version |
Description: 0 is a complex number. (Contributed by NM, 19-Feb-2005.) |
Ref | Expression |
---|---|
0cn | ⊢ 0 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-i2m1 7547 | . 2 ⊢ ((i · i) + 1) = 0 | |
2 | ax-icn 7537 | . . . 4 ⊢ i ∈ ℂ | |
3 | mulcl 7566 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
4 | 2, 2, 3 | mp2an 418 | . . 3 ⊢ (i · i) ∈ ℂ |
5 | ax-1cn 7535 | . . 3 ⊢ 1 ∈ ℂ | |
6 | addcl 7564 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
7 | 4, 5, 6 | mp2an 418 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
8 | 1, 7 | eqeltrri 2168 | 1 ⊢ 0 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1445 (class class class)co 5690 ℂcc 7445 0cc0 7447 1c1 7448 ici 7449 + caddc 7450 · cmul 7452 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-4 1452 ax-17 1471 ax-ial 1479 ax-ext 2077 ax-1cn 7535 ax-icn 7537 ax-addcl 7538 ax-mulcl 7540 ax-i2m1 7547 |
This theorem depends on definitions: df-bi 116 df-cleq 2088 df-clel 2091 |
This theorem is referenced by: 0cnd 7578 c0ex 7579 addid2 7718 00id 7720 cnegexlem2 7755 negcl 7779 subid 7798 subid1 7799 neg0 7825 negid 7826 negsub 7827 subneg 7828 negneg 7829 negeq0 7833 negsubdi 7835 renegcl 7840 mul02 7962 mul01 7964 mulneg1 7970 ixi 8157 negap0 8203 muleqadd 8234 divvalap 8238 div0ap 8266 recgt0 8408 0m0e0 8632 2muline0 8739 elznn0 8863 ser0 10064 0exp0e1 10075 expeq0 10101 0exp 10105 sq0 10160 bcval5 10286 shftval3 10376 shftidt2 10381 cjap0 10456 cjne0 10457 abs0 10606 abs00 10612 abs2dif 10654 clim0 10828 climz 10835 serclim0 10848 sumrbdclem 10919 fsum3cvg 10920 summodclem3 10923 summodclem2a 10924 fisumss 10935 fsumrelem 11014 ef0 11111 eftlub 11129 sin0 11169 tan0 11171 cnbl0 12311 cnblcld 12312 |
Copyright terms: Public domain | W3C validator |