Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0cn | GIF version |
Description: 0 is a complex number. (Contributed by NM, 19-Feb-2005.) |
Ref | Expression |
---|---|
0cn | ⊢ 0 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-i2m1 7858 | . 2 ⊢ ((i · i) + 1) = 0 | |
2 | ax-icn 7848 | . . . 4 ⊢ i ∈ ℂ | |
3 | mulcl 7880 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
4 | 2, 2, 3 | mp2an 423 | . . 3 ⊢ (i · i) ∈ ℂ |
5 | ax-1cn 7846 | . . 3 ⊢ 1 ∈ ℂ | |
6 | addcl 7878 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
7 | 4, 5, 6 | mp2an 423 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
8 | 1, 7 | eqeltrri 2240 | 1 ⊢ 0 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 0cc0 7753 1c1 7754 ici 7755 + caddc 7756 · cmul 7758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-i2m1 7858 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: 0cnd 7892 c0ex 7893 addid2 8037 00id 8039 cnegexlem2 8074 negcl 8098 subid 8117 subid1 8118 neg0 8144 negid 8145 negsub 8146 subneg 8147 negneg 8148 negeq0 8152 negsubdi 8154 renegcl 8159 mul02 8285 mul01 8287 mulneg1 8293 ixi 8481 negap0 8528 muleqadd 8565 divvalap 8570 div0ap 8598 recgt0 8745 0m0e0 8969 2muline0 9082 elznn0 9206 ser0 10449 0exp0e1 10460 expeq0 10486 0exp 10490 sq0 10545 bcval5 10676 shftval3 10769 shftidt2 10774 cjap0 10849 cjne0 10850 abs0 11000 abs2dif 11048 clim0 11226 climz 11233 serclim0 11246 sumrbdclem 11318 fsum3cvg 11319 summodclem3 11321 summodclem2a 11322 fisumss 11333 fsumrelem 11412 ef0 11613 eftlub 11631 sin0 11670 tan0 11672 cnbl0 13174 cnblcld 13175 dvconst 13301 dvcnp2cntop 13303 dvrecap 13317 dveflem 13327 sinhalfpilem 13352 sin2kpi 13372 cos2kpi 13373 sinkpi 13408 dcapnconst 13939 |
Copyright terms: Public domain | W3C validator |