| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0cn | GIF version | ||
| Description: 0 is a complex number. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| 0cn | ⊢ 0 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i2m1 8003 | . 2 ⊢ ((i · i) + 1) = 0 | |
| 2 | ax-icn 7993 | . . . 4 ⊢ i ∈ ℂ | |
| 3 | mulcl 8025 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
| 4 | 2, 2, 3 | mp2an 426 | . . 3 ⊢ (i · i) ∈ ℂ |
| 5 | ax-1cn 7991 | . . 3 ⊢ 1 ∈ ℂ | |
| 6 | addcl 8023 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
| 7 | 4, 5, 6 | mp2an 426 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
| 8 | 1, 7 | eqeltrri 2270 | 1 ⊢ 0 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 0cc0 7898 1c1 7899 ici 7900 + caddc 7901 · cmul 7903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-mulcl 7996 ax-i2m1 8003 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: 0cnd 8038 c0ex 8039 addlid 8184 00id 8186 cnegexlem2 8221 negcl 8245 subid 8264 subid1 8265 neg0 8291 negid 8292 negsub 8293 subneg 8294 negneg 8295 negeq0 8299 negsubdi 8301 renegcl 8306 mul02 8432 mul01 8434 mulneg1 8440 ixi 8629 negap0 8676 muleqadd 8714 divvalap 8720 div0ap 8748 recgt0 8896 0m0e0 9121 2muline0 9235 elznn0 9360 ser0 10644 0exp0e1 10655 expeq0 10681 0exp 10685 sq0 10741 bcval5 10874 shftval3 11011 shftidt2 11016 cjap0 11091 cjne0 11092 abs0 11242 abs2dif 11290 clim0 11469 climz 11476 serclim0 11489 sumrbdclem 11561 fsum3cvg 11562 summodclem3 11564 summodclem2a 11565 fisumss 11576 fsumrelem 11655 ef0 11856 eftlub 11874 sin0 11913 tan0 11915 4sqlem11 12597 cncrng 14203 cnfld0 14205 cnbl0 14878 cnblcld 14879 dvconst 15038 dvconstre 15040 dvconstss 15042 dvcnp2cntop 15043 dvrecap 15057 dveflem 15070 plyun0 15080 plycjlemc 15104 plycj 15105 dvply2g 15110 sinhalfpilem 15135 sin2kpi 15155 cos2kpi 15156 sinkpi 15191 1sgm2ppw 15339 dcapnconst 15818 |
| Copyright terms: Public domain | W3C validator |