| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0cn | GIF version | ||
| Description: 0 is a complex number. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| 0cn | ⊢ 0 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i2m1 8100 | . 2 ⊢ ((i · i) + 1) = 0 | |
| 2 | ax-icn 8090 | . . . 4 ⊢ i ∈ ℂ | |
| 3 | mulcl 8122 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
| 4 | 2, 2, 3 | mp2an 426 | . . 3 ⊢ (i · i) ∈ ℂ |
| 5 | ax-1cn 8088 | . . 3 ⊢ 1 ∈ ℂ | |
| 6 | addcl 8120 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
| 7 | 4, 5, 6 | mp2an 426 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
| 8 | 1, 7 | eqeltrri 2303 | 1 ⊢ 0 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 (class class class)co 6000 ℂcc 7993 0cc0 7995 1c1 7996 ici 7997 + caddc 7998 · cmul 8000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-mulcl 8093 ax-i2m1 8100 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: 0cnd 8135 c0ex 8136 addlid 8281 00id 8283 cnegexlem2 8318 negcl 8342 subid 8361 subid1 8362 neg0 8388 negid 8389 negsub 8390 subneg 8391 negneg 8392 negeq0 8396 negsubdi 8398 renegcl 8403 mul02 8529 mul01 8531 mulneg1 8537 ixi 8726 negap0 8773 muleqadd 8811 divvalap 8817 div0ap 8845 recgt0 8993 0m0e0 9218 2muline0 9332 elznn0 9457 ser0 10750 0exp0e1 10761 expeq0 10787 0exp 10791 sq0 10847 bcval5 10980 shftval3 11333 shftidt2 11338 cjap0 11413 cjne0 11414 abs0 11564 abs2dif 11612 clim0 11791 climz 11798 serclim0 11811 sumrbdclem 11883 fsum3cvg 11884 summodclem3 11886 summodclem2a 11887 fisumss 11898 fsumrelem 11977 ef0 12178 eftlub 12196 sin0 12235 tan0 12237 4sqlem11 12919 cncrng 14527 cnfld0 14529 cnbl0 15202 cnblcld 15203 dvconst 15362 dvconstre 15364 dvconstss 15366 dvcnp2cntop 15367 dvrecap 15381 dveflem 15394 plyun0 15404 plycjlemc 15428 plycj 15429 dvply2g 15434 sinhalfpilem 15459 sin2kpi 15479 cos2kpi 15480 sinkpi 15515 1sgm2ppw 15663 dcapnconst 16388 |
| Copyright terms: Public domain | W3C validator |