| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0cn | GIF version | ||
| Description: 0 is a complex number. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| 0cn | ⊢ 0 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i2m1 8029 | . 2 ⊢ ((i · i) + 1) = 0 | |
| 2 | ax-icn 8019 | . . . 4 ⊢ i ∈ ℂ | |
| 3 | mulcl 8051 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
| 4 | 2, 2, 3 | mp2an 426 | . . 3 ⊢ (i · i) ∈ ℂ |
| 5 | ax-1cn 8017 | . . 3 ⊢ 1 ∈ ℂ | |
| 6 | addcl 8049 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
| 7 | 4, 5, 6 | mp2an 426 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
| 8 | 1, 7 | eqeltrri 2278 | 1 ⊢ 0 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 (class class class)co 5943 ℂcc 7922 0cc0 7924 1c1 7925 ici 7926 + caddc 7927 · cmul 7929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-mulcl 8022 ax-i2m1 8029 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: 0cnd 8064 c0ex 8065 addlid 8210 00id 8212 cnegexlem2 8247 negcl 8271 subid 8290 subid1 8291 neg0 8317 negid 8318 negsub 8319 subneg 8320 negneg 8321 negeq0 8325 negsubdi 8327 renegcl 8332 mul02 8458 mul01 8460 mulneg1 8466 ixi 8655 negap0 8702 muleqadd 8740 divvalap 8746 div0ap 8774 recgt0 8922 0m0e0 9147 2muline0 9261 elznn0 9386 ser0 10676 0exp0e1 10687 expeq0 10713 0exp 10717 sq0 10773 bcval5 10906 shftval3 11080 shftidt2 11085 cjap0 11160 cjne0 11161 abs0 11311 abs2dif 11359 clim0 11538 climz 11545 serclim0 11558 sumrbdclem 11630 fsum3cvg 11631 summodclem3 11633 summodclem2a 11634 fisumss 11645 fsumrelem 11724 ef0 11925 eftlub 11943 sin0 11982 tan0 11984 4sqlem11 12666 cncrng 14273 cnfld0 14275 cnbl0 14948 cnblcld 14949 dvconst 15108 dvconstre 15110 dvconstss 15112 dvcnp2cntop 15113 dvrecap 15127 dveflem 15140 plyun0 15150 plycjlemc 15174 plycj 15175 dvply2g 15180 sinhalfpilem 15205 sin2kpi 15225 cos2kpi 15226 sinkpi 15261 1sgm2ppw 15409 dcapnconst 15933 |
| Copyright terms: Public domain | W3C validator |