ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inelr GIF version

Theorem inelr 8628
Description: The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.)
Assertion
Ref Expression
inelr ¬ i ∈ ℝ

Proof of Theorem inelr
StepHypRef Expression
1 ine0 8437 . . 3 i ≠ 0
21neii 2369 . 2 ¬ i = 0
3 0lt1 8170 . . . . . 6 0 < 1
4 0re 8043 . . . . . . 7 0 ∈ ℝ
5 1re 8042 . . . . . . 7 1 ∈ ℝ
64, 5ltnsymi 8143 . . . . . 6 (0 < 1 → ¬ 1 < 0)
73, 6ax-mp 5 . . . . 5 ¬ 1 < 0
8 ixi 8627 . . . . . . . 8 (i · i) = -1
95renegcli 8305 . . . . . . . 8 -1 ∈ ℝ
108, 9eqeltri 2269 . . . . . . 7 (i · i) ∈ ℝ
114, 10, 5ltadd1i 8546 . . . . . 6 (0 < (i · i) ↔ (0 + 1) < ((i · i) + 1))
12 ax-1cn 7989 . . . . . . . 8 1 ∈ ℂ
1312addlidi 8186 . . . . . . 7 (0 + 1) = 1
14 ax-i2m1 8001 . . . . . . 7 ((i · i) + 1) = 0
1513, 14breq12i 4043 . . . . . 6 ((0 + 1) < ((i · i) + 1) ↔ 1 < 0)
1611, 15bitri 184 . . . . 5 (0 < (i · i) ↔ 1 < 0)
177, 16mtbir 672 . . . 4 ¬ 0 < (i · i)
18 mullt0 8524 . . . . . 6 (((i ∈ ℝ ∧ i < 0) ∧ (i ∈ ℝ ∧ i < 0)) → 0 < (i · i))
1918anidms 397 . . . . 5 ((i ∈ ℝ ∧ i < 0) → 0 < (i · i))
2019ex 115 . . . 4 (i ∈ ℝ → (i < 0 → 0 < (i · i)))
2117, 20mtoi 665 . . 3 (i ∈ ℝ → ¬ i < 0)
22 mulgt0 8118 . . . . . 6 (((i ∈ ℝ ∧ 0 < i) ∧ (i ∈ ℝ ∧ 0 < i)) → 0 < (i · i))
2322anidms 397 . . . . 5 ((i ∈ ℝ ∧ 0 < i) → 0 < (i · i))
2423ex 115 . . . 4 (i ∈ ℝ → (0 < i → 0 < (i · i)))
2517, 24mtoi 665 . . 3 (i ∈ ℝ → ¬ 0 < i)
26 lttri3 8123 . . . 4 ((i ∈ ℝ ∧ 0 ∈ ℝ) → (i = 0 ↔ (¬ i < 0 ∧ ¬ 0 < i)))
274, 26mpan2 425 . . 3 (i ∈ ℝ → (i = 0 ↔ (¬ i < 0 ∧ ¬ 0 < i)))
2821, 25, 27mpbir2and 946 . 2 (i ∈ ℝ → i = 0)
292, 28mto 663 1 ¬ i ∈ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105   = wceq 1364  wcel 2167   class class class wbr 4034  (class class class)co 5925  cr 7895  0cc0 7896  1c1 7897  ici 7898   + caddc 7899   · cmul 7901   < clt 8078  -cneg 8215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-sub 8216  df-neg 8217
This theorem is referenced by:  rimul  8629
  Copyright terms: Public domain W3C validator