![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inelr | GIF version |
Description: The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
Ref | Expression |
---|---|
inelr | ⊢ ¬ i ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ine0 8353 | . . 3 ⊢ i ≠ 0 | |
2 | 1 | neii 2349 | . 2 ⊢ ¬ i = 0 |
3 | 0lt1 8086 | . . . . . 6 ⊢ 0 < 1 | |
4 | 0re 7959 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
5 | 1re 7958 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
6 | 4, 5 | ltnsymi 8059 | . . . . . 6 ⊢ (0 < 1 → ¬ 1 < 0) |
7 | 3, 6 | ax-mp 5 | . . . . 5 ⊢ ¬ 1 < 0 |
8 | ixi 8542 | . . . . . . . 8 ⊢ (i · i) = -1 | |
9 | 5 | renegcli 8221 | . . . . . . . 8 ⊢ -1 ∈ ℝ |
10 | 8, 9 | eqeltri 2250 | . . . . . . 7 ⊢ (i · i) ∈ ℝ |
11 | 4, 10, 5 | ltadd1i 8461 | . . . . . 6 ⊢ (0 < (i · i) ↔ (0 + 1) < ((i · i) + 1)) |
12 | ax-1cn 7906 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
13 | 12 | addid2i 8102 | . . . . . . 7 ⊢ (0 + 1) = 1 |
14 | ax-i2m1 7918 | . . . . . . 7 ⊢ ((i · i) + 1) = 0 | |
15 | 13, 14 | breq12i 4014 | . . . . . 6 ⊢ ((0 + 1) < ((i · i) + 1) ↔ 1 < 0) |
16 | 11, 15 | bitri 184 | . . . . 5 ⊢ (0 < (i · i) ↔ 1 < 0) |
17 | 7, 16 | mtbir 671 | . . . 4 ⊢ ¬ 0 < (i · i) |
18 | mullt0 8439 | . . . . . 6 ⊢ (((i ∈ ℝ ∧ i < 0) ∧ (i ∈ ℝ ∧ i < 0)) → 0 < (i · i)) | |
19 | 18 | anidms 397 | . . . . 5 ⊢ ((i ∈ ℝ ∧ i < 0) → 0 < (i · i)) |
20 | 19 | ex 115 | . . . 4 ⊢ (i ∈ ℝ → (i < 0 → 0 < (i · i))) |
21 | 17, 20 | mtoi 664 | . . 3 ⊢ (i ∈ ℝ → ¬ i < 0) |
22 | mulgt0 8034 | . . . . . 6 ⊢ (((i ∈ ℝ ∧ 0 < i) ∧ (i ∈ ℝ ∧ 0 < i)) → 0 < (i · i)) | |
23 | 22 | anidms 397 | . . . . 5 ⊢ ((i ∈ ℝ ∧ 0 < i) → 0 < (i · i)) |
24 | 23 | ex 115 | . . . 4 ⊢ (i ∈ ℝ → (0 < i → 0 < (i · i))) |
25 | 17, 24 | mtoi 664 | . . 3 ⊢ (i ∈ ℝ → ¬ 0 < i) |
26 | lttri3 8039 | . . . 4 ⊢ ((i ∈ ℝ ∧ 0 ∈ ℝ) → (i = 0 ↔ (¬ i < 0 ∧ ¬ 0 < i))) | |
27 | 4, 26 | mpan2 425 | . . 3 ⊢ (i ∈ ℝ → (i = 0 ↔ (¬ i < 0 ∧ ¬ 0 < i))) |
28 | 21, 25, 27 | mpbir2and 944 | . 2 ⊢ (i ∈ ℝ → i = 0) |
29 | 2, 28 | mto 662 | 1 ⊢ ¬ i ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5877 ℝcr 7812 0cc0 7813 1c1 7814 ici 7815 + caddc 7816 · cmul 7818 < clt 7994 -cneg 8131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-ltxr 7999 df-sub 8132 df-neg 8133 |
This theorem is referenced by: rimul 8544 |
Copyright terms: Public domain | W3C validator |