| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inelr | GIF version | ||
| Description: The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
| Ref | Expression |
|---|---|
| inelr | ⊢ ¬ i ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ine0 8486 | . . 3 ⊢ i ≠ 0 | |
| 2 | 1 | neii 2379 | . 2 ⊢ ¬ i = 0 |
| 3 | 0lt1 8219 | . . . . . 6 ⊢ 0 < 1 | |
| 4 | 0re 8092 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 5 | 1re 8091 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 6 | 4, 5 | ltnsymi 8192 | . . . . . 6 ⊢ (0 < 1 → ¬ 1 < 0) |
| 7 | 3, 6 | ax-mp 5 | . . . . 5 ⊢ ¬ 1 < 0 |
| 8 | ixi 8676 | . . . . . . . 8 ⊢ (i · i) = -1 | |
| 9 | 5 | renegcli 8354 | . . . . . . . 8 ⊢ -1 ∈ ℝ |
| 10 | 8, 9 | eqeltri 2279 | . . . . . . 7 ⊢ (i · i) ∈ ℝ |
| 11 | 4, 10, 5 | ltadd1i 8595 | . . . . . 6 ⊢ (0 < (i · i) ↔ (0 + 1) < ((i · i) + 1)) |
| 12 | ax-1cn 8038 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 13 | 12 | addlidi 8235 | . . . . . . 7 ⊢ (0 + 1) = 1 |
| 14 | ax-i2m1 8050 | . . . . . . 7 ⊢ ((i · i) + 1) = 0 | |
| 15 | 13, 14 | breq12i 4060 | . . . . . 6 ⊢ ((0 + 1) < ((i · i) + 1) ↔ 1 < 0) |
| 16 | 11, 15 | bitri 184 | . . . . 5 ⊢ (0 < (i · i) ↔ 1 < 0) |
| 17 | 7, 16 | mtbir 673 | . . . 4 ⊢ ¬ 0 < (i · i) |
| 18 | mullt0 8573 | . . . . . 6 ⊢ (((i ∈ ℝ ∧ i < 0) ∧ (i ∈ ℝ ∧ i < 0)) → 0 < (i · i)) | |
| 19 | 18 | anidms 397 | . . . . 5 ⊢ ((i ∈ ℝ ∧ i < 0) → 0 < (i · i)) |
| 20 | 19 | ex 115 | . . . 4 ⊢ (i ∈ ℝ → (i < 0 → 0 < (i · i))) |
| 21 | 17, 20 | mtoi 666 | . . 3 ⊢ (i ∈ ℝ → ¬ i < 0) |
| 22 | mulgt0 8167 | . . . . . 6 ⊢ (((i ∈ ℝ ∧ 0 < i) ∧ (i ∈ ℝ ∧ 0 < i)) → 0 < (i · i)) | |
| 23 | 22 | anidms 397 | . . . . 5 ⊢ ((i ∈ ℝ ∧ 0 < i) → 0 < (i · i)) |
| 24 | 23 | ex 115 | . . . 4 ⊢ (i ∈ ℝ → (0 < i → 0 < (i · i))) |
| 25 | 17, 24 | mtoi 666 | . . 3 ⊢ (i ∈ ℝ → ¬ 0 < i) |
| 26 | lttri3 8172 | . . . 4 ⊢ ((i ∈ ℝ ∧ 0 ∈ ℝ) → (i = 0 ↔ (¬ i < 0 ∧ ¬ 0 < i))) | |
| 27 | 4, 26 | mpan2 425 | . . 3 ⊢ (i ∈ ℝ → (i = 0 ↔ (¬ i < 0 ∧ ¬ 0 < i))) |
| 28 | 21, 25, 27 | mpbir2and 947 | . 2 ⊢ (i ∈ ℝ → i = 0) |
| 29 | 2, 28 | mto 664 | 1 ⊢ ¬ i ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 class class class wbr 4051 (class class class)co 5957 ℝcr 7944 0cc0 7945 1c1 7946 ici 7947 + caddc 7948 · cmul 7950 < clt 8127 -cneg 8264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-sub 8265 df-neg 8266 |
| This theorem is referenced by: rimul 8678 |
| Copyright terms: Public domain | W3C validator |