![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inelr | GIF version |
Description: The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
Ref | Expression |
---|---|
inelr | ⊢ ¬ i ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ine0 8413 | . . 3 ⊢ i ≠ 0 | |
2 | 1 | neii 2366 | . 2 ⊢ ¬ i = 0 |
3 | 0lt1 8146 | . . . . . 6 ⊢ 0 < 1 | |
4 | 0re 8019 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
5 | 1re 8018 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
6 | 4, 5 | ltnsymi 8119 | . . . . . 6 ⊢ (0 < 1 → ¬ 1 < 0) |
7 | 3, 6 | ax-mp 5 | . . . . 5 ⊢ ¬ 1 < 0 |
8 | ixi 8602 | . . . . . . . 8 ⊢ (i · i) = -1 | |
9 | 5 | renegcli 8281 | . . . . . . . 8 ⊢ -1 ∈ ℝ |
10 | 8, 9 | eqeltri 2266 | . . . . . . 7 ⊢ (i · i) ∈ ℝ |
11 | 4, 10, 5 | ltadd1i 8521 | . . . . . 6 ⊢ (0 < (i · i) ↔ (0 + 1) < ((i · i) + 1)) |
12 | ax-1cn 7965 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
13 | 12 | addid2i 8162 | . . . . . . 7 ⊢ (0 + 1) = 1 |
14 | ax-i2m1 7977 | . . . . . . 7 ⊢ ((i · i) + 1) = 0 | |
15 | 13, 14 | breq12i 4038 | . . . . . 6 ⊢ ((0 + 1) < ((i · i) + 1) ↔ 1 < 0) |
16 | 11, 15 | bitri 184 | . . . . 5 ⊢ (0 < (i · i) ↔ 1 < 0) |
17 | 7, 16 | mtbir 672 | . . . 4 ⊢ ¬ 0 < (i · i) |
18 | mullt0 8499 | . . . . . 6 ⊢ (((i ∈ ℝ ∧ i < 0) ∧ (i ∈ ℝ ∧ i < 0)) → 0 < (i · i)) | |
19 | 18 | anidms 397 | . . . . 5 ⊢ ((i ∈ ℝ ∧ i < 0) → 0 < (i · i)) |
20 | 19 | ex 115 | . . . 4 ⊢ (i ∈ ℝ → (i < 0 → 0 < (i · i))) |
21 | 17, 20 | mtoi 665 | . . 3 ⊢ (i ∈ ℝ → ¬ i < 0) |
22 | mulgt0 8094 | . . . . . 6 ⊢ (((i ∈ ℝ ∧ 0 < i) ∧ (i ∈ ℝ ∧ 0 < i)) → 0 < (i · i)) | |
23 | 22 | anidms 397 | . . . . 5 ⊢ ((i ∈ ℝ ∧ 0 < i) → 0 < (i · i)) |
24 | 23 | ex 115 | . . . 4 ⊢ (i ∈ ℝ → (0 < i → 0 < (i · i))) |
25 | 17, 24 | mtoi 665 | . . 3 ⊢ (i ∈ ℝ → ¬ 0 < i) |
26 | lttri3 8099 | . . . 4 ⊢ ((i ∈ ℝ ∧ 0 ∈ ℝ) → (i = 0 ↔ (¬ i < 0 ∧ ¬ 0 < i))) | |
27 | 4, 26 | mpan2 425 | . . 3 ⊢ (i ∈ ℝ → (i = 0 ↔ (¬ i < 0 ∧ ¬ 0 < i))) |
28 | 21, 25, 27 | mpbir2and 946 | . 2 ⊢ (i ∈ ℝ → i = 0) |
29 | 2, 28 | mto 663 | 1 ⊢ ¬ i ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 ℝcr 7871 0cc0 7872 1c1 7873 ici 7874 + caddc 7875 · cmul 7877 < clt 8054 -cneg 8191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-sub 8192 df-neg 8193 |
This theorem is referenced by: rimul 8604 |
Copyright terms: Public domain | W3C validator |