Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inelr | GIF version |
Description: The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
Ref | Expression |
---|---|
inelr | ⊢ ¬ i ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ine0 8313 | . . 3 ⊢ i ≠ 0 | |
2 | 1 | neii 2342 | . 2 ⊢ ¬ i = 0 |
3 | 0lt1 8046 | . . . . . 6 ⊢ 0 < 1 | |
4 | 0re 7920 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
5 | 1re 7919 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
6 | 4, 5 | ltnsymi 8019 | . . . . . 6 ⊢ (0 < 1 → ¬ 1 < 0) |
7 | 3, 6 | ax-mp 5 | . . . . 5 ⊢ ¬ 1 < 0 |
8 | ixi 8502 | . . . . . . . 8 ⊢ (i · i) = -1 | |
9 | 5 | renegcli 8181 | . . . . . . . 8 ⊢ -1 ∈ ℝ |
10 | 8, 9 | eqeltri 2243 | . . . . . . 7 ⊢ (i · i) ∈ ℝ |
11 | 4, 10, 5 | ltadd1i 8421 | . . . . . 6 ⊢ (0 < (i · i) ↔ (0 + 1) < ((i · i) + 1)) |
12 | ax-1cn 7867 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
13 | 12 | addid2i 8062 | . . . . . . 7 ⊢ (0 + 1) = 1 |
14 | ax-i2m1 7879 | . . . . . . 7 ⊢ ((i · i) + 1) = 0 | |
15 | 13, 14 | breq12i 3998 | . . . . . 6 ⊢ ((0 + 1) < ((i · i) + 1) ↔ 1 < 0) |
16 | 11, 15 | bitri 183 | . . . . 5 ⊢ (0 < (i · i) ↔ 1 < 0) |
17 | 7, 16 | mtbir 666 | . . . 4 ⊢ ¬ 0 < (i · i) |
18 | mullt0 8399 | . . . . . 6 ⊢ (((i ∈ ℝ ∧ i < 0) ∧ (i ∈ ℝ ∧ i < 0)) → 0 < (i · i)) | |
19 | 18 | anidms 395 | . . . . 5 ⊢ ((i ∈ ℝ ∧ i < 0) → 0 < (i · i)) |
20 | 19 | ex 114 | . . . 4 ⊢ (i ∈ ℝ → (i < 0 → 0 < (i · i))) |
21 | 17, 20 | mtoi 659 | . . 3 ⊢ (i ∈ ℝ → ¬ i < 0) |
22 | mulgt0 7994 | . . . . . 6 ⊢ (((i ∈ ℝ ∧ 0 < i) ∧ (i ∈ ℝ ∧ 0 < i)) → 0 < (i · i)) | |
23 | 22 | anidms 395 | . . . . 5 ⊢ ((i ∈ ℝ ∧ 0 < i) → 0 < (i · i)) |
24 | 23 | ex 114 | . . . 4 ⊢ (i ∈ ℝ → (0 < i → 0 < (i · i))) |
25 | 17, 24 | mtoi 659 | . . 3 ⊢ (i ∈ ℝ → ¬ 0 < i) |
26 | lttri3 7999 | . . . 4 ⊢ ((i ∈ ℝ ∧ 0 ∈ ℝ) → (i = 0 ↔ (¬ i < 0 ∧ ¬ 0 < i))) | |
27 | 4, 26 | mpan2 423 | . . 3 ⊢ (i ∈ ℝ → (i = 0 ↔ (¬ i < 0 ∧ ¬ 0 < i))) |
28 | 21, 25, 27 | mpbir2and 939 | . 2 ⊢ (i ∈ ℝ → i = 0) |
29 | 2, 28 | mto 657 | 1 ⊢ ¬ i ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 (class class class)co 5853 ℝcr 7773 0cc0 7774 1c1 7775 ici 7776 + caddc 7777 · cmul 7779 < clt 7954 -cneg 8091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-ltxr 7959 df-sub 8092 df-neg 8093 |
This theorem is referenced by: rimul 8504 |
Copyright terms: Public domain | W3C validator |