| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inelr | GIF version | ||
| Description: The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
| Ref | Expression |
|---|---|
| inelr | ⊢ ¬ i ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ine0 8465 | . . 3 ⊢ i ≠ 0 | |
| 2 | 1 | neii 2377 | . 2 ⊢ ¬ i = 0 |
| 3 | 0lt1 8198 | . . . . . 6 ⊢ 0 < 1 | |
| 4 | 0re 8071 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 5 | 1re 8070 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 6 | 4, 5 | ltnsymi 8171 | . . . . . 6 ⊢ (0 < 1 → ¬ 1 < 0) |
| 7 | 3, 6 | ax-mp 5 | . . . . 5 ⊢ ¬ 1 < 0 |
| 8 | ixi 8655 | . . . . . . . 8 ⊢ (i · i) = -1 | |
| 9 | 5 | renegcli 8333 | . . . . . . . 8 ⊢ -1 ∈ ℝ |
| 10 | 8, 9 | eqeltri 2277 | . . . . . . 7 ⊢ (i · i) ∈ ℝ |
| 11 | 4, 10, 5 | ltadd1i 8574 | . . . . . 6 ⊢ (0 < (i · i) ↔ (0 + 1) < ((i · i) + 1)) |
| 12 | ax-1cn 8017 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 13 | 12 | addlidi 8214 | . . . . . . 7 ⊢ (0 + 1) = 1 |
| 14 | ax-i2m1 8029 | . . . . . . 7 ⊢ ((i · i) + 1) = 0 | |
| 15 | 13, 14 | breq12i 4052 | . . . . . 6 ⊢ ((0 + 1) < ((i · i) + 1) ↔ 1 < 0) |
| 16 | 11, 15 | bitri 184 | . . . . 5 ⊢ (0 < (i · i) ↔ 1 < 0) |
| 17 | 7, 16 | mtbir 672 | . . . 4 ⊢ ¬ 0 < (i · i) |
| 18 | mullt0 8552 | . . . . . 6 ⊢ (((i ∈ ℝ ∧ i < 0) ∧ (i ∈ ℝ ∧ i < 0)) → 0 < (i · i)) | |
| 19 | 18 | anidms 397 | . . . . 5 ⊢ ((i ∈ ℝ ∧ i < 0) → 0 < (i · i)) |
| 20 | 19 | ex 115 | . . . 4 ⊢ (i ∈ ℝ → (i < 0 → 0 < (i · i))) |
| 21 | 17, 20 | mtoi 665 | . . 3 ⊢ (i ∈ ℝ → ¬ i < 0) |
| 22 | mulgt0 8146 | . . . . . 6 ⊢ (((i ∈ ℝ ∧ 0 < i) ∧ (i ∈ ℝ ∧ 0 < i)) → 0 < (i · i)) | |
| 23 | 22 | anidms 397 | . . . . 5 ⊢ ((i ∈ ℝ ∧ 0 < i) → 0 < (i · i)) |
| 24 | 23 | ex 115 | . . . 4 ⊢ (i ∈ ℝ → (0 < i → 0 < (i · i))) |
| 25 | 17, 24 | mtoi 665 | . . 3 ⊢ (i ∈ ℝ → ¬ 0 < i) |
| 26 | lttri3 8151 | . . . 4 ⊢ ((i ∈ ℝ ∧ 0 ∈ ℝ) → (i = 0 ↔ (¬ i < 0 ∧ ¬ 0 < i))) | |
| 27 | 4, 26 | mpan2 425 | . . 3 ⊢ (i ∈ ℝ → (i = 0 ↔ (¬ i < 0 ∧ ¬ 0 < i))) |
| 28 | 21, 25, 27 | mpbir2and 946 | . 2 ⊢ (i ∈ ℝ → i = 0) |
| 29 | 2, 28 | mto 663 | 1 ⊢ ¬ i ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 (class class class)co 5943 ℝcr 7923 0cc0 7924 1c1 7925 ici 7926 + caddc 7927 · cmul 7929 < clt 8106 -cneg 8243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-sub 8244 df-neg 8245 |
| This theorem is referenced by: rimul 8657 |
| Copyright terms: Public domain | W3C validator |