ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inelr GIF version

Theorem inelr 8677
Description: The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.)
Assertion
Ref Expression
inelr ¬ i ∈ ℝ

Proof of Theorem inelr
StepHypRef Expression
1 ine0 8486 . . 3 i ≠ 0
21neii 2379 . 2 ¬ i = 0
3 0lt1 8219 . . . . . 6 0 < 1
4 0re 8092 . . . . . . 7 0 ∈ ℝ
5 1re 8091 . . . . . . 7 1 ∈ ℝ
64, 5ltnsymi 8192 . . . . . 6 (0 < 1 → ¬ 1 < 0)
73, 6ax-mp 5 . . . . 5 ¬ 1 < 0
8 ixi 8676 . . . . . . . 8 (i · i) = -1
95renegcli 8354 . . . . . . . 8 -1 ∈ ℝ
108, 9eqeltri 2279 . . . . . . 7 (i · i) ∈ ℝ
114, 10, 5ltadd1i 8595 . . . . . 6 (0 < (i · i) ↔ (0 + 1) < ((i · i) + 1))
12 ax-1cn 8038 . . . . . . . 8 1 ∈ ℂ
1312addlidi 8235 . . . . . . 7 (0 + 1) = 1
14 ax-i2m1 8050 . . . . . . 7 ((i · i) + 1) = 0
1513, 14breq12i 4060 . . . . . 6 ((0 + 1) < ((i · i) + 1) ↔ 1 < 0)
1611, 15bitri 184 . . . . 5 (0 < (i · i) ↔ 1 < 0)
177, 16mtbir 673 . . . 4 ¬ 0 < (i · i)
18 mullt0 8573 . . . . . 6 (((i ∈ ℝ ∧ i < 0) ∧ (i ∈ ℝ ∧ i < 0)) → 0 < (i · i))
1918anidms 397 . . . . 5 ((i ∈ ℝ ∧ i < 0) → 0 < (i · i))
2019ex 115 . . . 4 (i ∈ ℝ → (i < 0 → 0 < (i · i)))
2117, 20mtoi 666 . . 3 (i ∈ ℝ → ¬ i < 0)
22 mulgt0 8167 . . . . . 6 (((i ∈ ℝ ∧ 0 < i) ∧ (i ∈ ℝ ∧ 0 < i)) → 0 < (i · i))
2322anidms 397 . . . . 5 ((i ∈ ℝ ∧ 0 < i) → 0 < (i · i))
2423ex 115 . . . 4 (i ∈ ℝ → (0 < i → 0 < (i · i)))
2517, 24mtoi 666 . . 3 (i ∈ ℝ → ¬ 0 < i)
26 lttri3 8172 . . . 4 ((i ∈ ℝ ∧ 0 ∈ ℝ) → (i = 0 ↔ (¬ i < 0 ∧ ¬ 0 < i)))
274, 26mpan2 425 . . 3 (i ∈ ℝ → (i = 0 ↔ (¬ i < 0 ∧ ¬ 0 < i)))
2821, 25, 27mpbir2and 947 . 2 (i ∈ ℝ → i = 0)
292, 28mto 664 1 ¬ i ∈ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105   = wceq 1373  wcel 2177   class class class wbr 4051  (class class class)co 5957  cr 7944  0cc0 7945  1c1 7946  ici 7947   + caddc 7948   · cmul 7950   < clt 8127  -cneg 8264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-sub 8265  df-neg 8266
This theorem is referenced by:  rimul  8678
  Copyright terms: Public domain W3C validator