ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axi2m1 GIF version

Theorem axi2m1 7837
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 7879. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axi2m1 ((i · i) + 1) = 0

Proof of Theorem axi2m1
StepHypRef Expression
1 0r 7712 . . . . . 6 0RR
2 1sr 7713 . . . . . 6 1RR
3 mulcnsr 7797 . . . . . 6 (((0RR ∧ 1RR) ∧ (0RR ∧ 1RR)) → (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩)
41, 2, 1, 2, 3mp4an 425 . . . . 5 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩
5 00sr 7731 . . . . . . . . 9 (0RR → (0R ·R 0R) = 0R)
61, 5ax-mp 5 . . . . . . . 8 (0R ·R 0R) = 0R
7 1idsr 7730 . . . . . . . . . . 11 (1RR → (1R ·R 1R) = 1R)
82, 7ax-mp 5 . . . . . . . . . 10 (1R ·R 1R) = 1R
98oveq2i 5864 . . . . . . . . 9 (-1R ·R (1R ·R 1R)) = (-1R ·R 1R)
10 m1r 7714 . . . . . . . . . 10 -1RR
11 1idsr 7730 . . . . . . . . . 10 (-1RR → (-1R ·R 1R) = -1R)
1210, 11ax-mp 5 . . . . . . . . 9 (-1R ·R 1R) = -1R
139, 12eqtri 2191 . . . . . . . 8 (-1R ·R (1R ·R 1R)) = -1R
146, 13oveq12i 5865 . . . . . . 7 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = (0R +R -1R)
15 addcomsrg 7717 . . . . . . . 8 ((0RR ∧ -1RR) → (0R +R -1R) = (-1R +R 0R))
161, 10, 15mp2an 424 . . . . . . 7 (0R +R -1R) = (-1R +R 0R)
17 0idsr 7729 . . . . . . . 8 (-1RR → (-1R +R 0R) = -1R)
1810, 17ax-mp 5 . . . . . . 7 (-1R +R 0R) = -1R
1914, 16, 183eqtri 2195 . . . . . 6 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = -1R
20 00sr 7731 . . . . . . . . 9 (1RR → (1R ·R 0R) = 0R)
212, 20ax-mp 5 . . . . . . . 8 (1R ·R 0R) = 0R
22 1idsr 7730 . . . . . . . . 9 (0RR → (0R ·R 1R) = 0R)
231, 22ax-mp 5 . . . . . . . 8 (0R ·R 1R) = 0R
2421, 23oveq12i 5865 . . . . . . 7 ((1R ·R 0R) +R (0R ·R 1R)) = (0R +R 0R)
25 0idsr 7729 . . . . . . . 8 (0RR → (0R +R 0R) = 0R)
261, 25ax-mp 5 . . . . . . 7 (0R +R 0R) = 0R
2724, 26eqtri 2191 . . . . . 6 ((1R ·R 0R) +R (0R ·R 1R)) = 0R
2819, 27opeq12i 3770 . . . . 5 ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩ = ⟨-1R, 0R
294, 28eqtri 2191 . . . 4 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨-1R, 0R
3029oveq1i 5863 . . 3 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = (⟨-1R, 0R⟩ + ⟨1R, 0R⟩)
31 addresr 7799 . . . 4 ((-1RR ∧ 1RR) → (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R⟩)
3210, 2, 31mp2an 424 . . 3 (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R
33 m1p1sr 7722 . . . 4 (-1R +R 1R) = 0R
3433opeq1i 3768 . . 3 ⟨(-1R +R 1R), 0R⟩ = ⟨0R, 0R
3530, 32, 343eqtri 2195 . 2 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = ⟨0R, 0R
36 df-i 7783 . . . 4 i = ⟨0R, 1R
3736, 36oveq12i 5865 . . 3 (i · i) = (⟨0R, 1R⟩ · ⟨0R, 1R⟩)
38 df-1 7782 . . 3 1 = ⟨1R, 0R
3937, 38oveq12i 5865 . 2 ((i · i) + 1) = ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩)
40 df-0 7781 . 2 0 = ⟨0R, 0R
4135, 39, 403eqtr4i 2201 1 ((i · i) + 1) = 0
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  cop 3586  (class class class)co 5853  Rcnr 7259  0Rc0r 7260  1Rc1r 7261  -1Rcm1r 7262   +R cplr 7263   ·R cmr 7264  0cc0 7774  1c1 7775  ici 7776   + caddc 7777   · cmul 7779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-imp 7431  df-enr 7688  df-nr 7689  df-plr 7690  df-mr 7691  df-0r 7693  df-1r 7694  df-m1r 7695  df-c 7780  df-0 7781  df-1 7782  df-i 7783  df-add 7785  df-mul 7786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator