ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axi2m1 GIF version

Theorem axi2m1 7852
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 7894. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axi2m1 ((i · i) + 1) = 0

Proof of Theorem axi2m1
StepHypRef Expression
1 0r 7727 . . . . . 6 0RR
2 1sr 7728 . . . . . 6 1RR
3 mulcnsr 7812 . . . . . 6 (((0RR ∧ 1RR) ∧ (0RR ∧ 1RR)) → (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩)
41, 2, 1, 2, 3mp4an 427 . . . . 5 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩
5 00sr 7746 . . . . . . . . 9 (0RR → (0R ·R 0R) = 0R)
61, 5ax-mp 5 . . . . . . . 8 (0R ·R 0R) = 0R
7 1idsr 7745 . . . . . . . . . . 11 (1RR → (1R ·R 1R) = 1R)
82, 7ax-mp 5 . . . . . . . . . 10 (1R ·R 1R) = 1R
98oveq2i 5879 . . . . . . . . 9 (-1R ·R (1R ·R 1R)) = (-1R ·R 1R)
10 m1r 7729 . . . . . . . . . 10 -1RR
11 1idsr 7745 . . . . . . . . . 10 (-1RR → (-1R ·R 1R) = -1R)
1210, 11ax-mp 5 . . . . . . . . 9 (-1R ·R 1R) = -1R
139, 12eqtri 2198 . . . . . . . 8 (-1R ·R (1R ·R 1R)) = -1R
146, 13oveq12i 5880 . . . . . . 7 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = (0R +R -1R)
15 addcomsrg 7732 . . . . . . . 8 ((0RR ∧ -1RR) → (0R +R -1R) = (-1R +R 0R))
161, 10, 15mp2an 426 . . . . . . 7 (0R +R -1R) = (-1R +R 0R)
17 0idsr 7744 . . . . . . . 8 (-1RR → (-1R +R 0R) = -1R)
1810, 17ax-mp 5 . . . . . . 7 (-1R +R 0R) = -1R
1914, 16, 183eqtri 2202 . . . . . 6 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = -1R
20 00sr 7746 . . . . . . . . 9 (1RR → (1R ·R 0R) = 0R)
212, 20ax-mp 5 . . . . . . . 8 (1R ·R 0R) = 0R
22 1idsr 7745 . . . . . . . . 9 (0RR → (0R ·R 1R) = 0R)
231, 22ax-mp 5 . . . . . . . 8 (0R ·R 1R) = 0R
2421, 23oveq12i 5880 . . . . . . 7 ((1R ·R 0R) +R (0R ·R 1R)) = (0R +R 0R)
25 0idsr 7744 . . . . . . . 8 (0RR → (0R +R 0R) = 0R)
261, 25ax-mp 5 . . . . . . 7 (0R +R 0R) = 0R
2724, 26eqtri 2198 . . . . . 6 ((1R ·R 0R) +R (0R ·R 1R)) = 0R
2819, 27opeq12i 3781 . . . . 5 ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩ = ⟨-1R, 0R
294, 28eqtri 2198 . . . 4 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨-1R, 0R
3029oveq1i 5878 . . 3 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = (⟨-1R, 0R⟩ + ⟨1R, 0R⟩)
31 addresr 7814 . . . 4 ((-1RR ∧ 1RR) → (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R⟩)
3210, 2, 31mp2an 426 . . 3 (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R
33 m1p1sr 7737 . . . 4 (-1R +R 1R) = 0R
3433opeq1i 3779 . . 3 ⟨(-1R +R 1R), 0R⟩ = ⟨0R, 0R
3530, 32, 343eqtri 2202 . 2 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = ⟨0R, 0R
36 df-i 7798 . . . 4 i = ⟨0R, 1R
3736, 36oveq12i 5880 . . 3 (i · i) = (⟨0R, 1R⟩ · ⟨0R, 1R⟩)
38 df-1 7797 . . 3 1 = ⟨1R, 0R
3937, 38oveq12i 5880 . 2 ((i · i) + 1) = ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩)
40 df-0 7796 . 2 0 = ⟨0R, 0R
4135, 39, 403eqtr4i 2208 1 ((i · i) + 1) = 0
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  cop 3594  (class class class)co 5868  Rcnr 7274  0Rc0r 7275  1Rc1r 7276  -1Rcm1r 7277   +R cplr 7278   ·R cmr 7279  0cc0 7789  1c1 7790  ici 7791   + caddc 7792   · cmul 7794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4205  ax-un 4429  ax-setind 4532  ax-iinf 4583
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4285  df-id 4289  df-po 4292  df-iso 4293  df-iord 4362  df-on 4364  df-suc 4367  df-iom 4586  df-xp 4628  df-rel 4629  df-cnv 4630  df-co 4631  df-dm 4632  df-rn 4633  df-res 4634  df-ima 4635  df-iota 5173  df-fun 5213  df-fn 5214  df-f 5215  df-f1 5216  df-fo 5217  df-f1o 5218  df-fv 5219  df-ov 5871  df-oprab 5872  df-mpo 5873  df-1st 6134  df-2nd 6135  df-recs 6299  df-irdg 6364  df-1o 6410  df-2o 6411  df-oadd 6414  df-omul 6415  df-er 6528  df-ec 6530  df-qs 6534  df-ni 7281  df-pli 7282  df-mi 7283  df-lti 7284  df-plpq 7321  df-mpq 7322  df-enq 7324  df-nqqs 7325  df-plqqs 7326  df-mqqs 7327  df-1nqqs 7328  df-rq 7329  df-ltnqqs 7330  df-enq0 7401  df-nq0 7402  df-0nq0 7403  df-plq0 7404  df-mq0 7405  df-inp 7443  df-i1p 7444  df-iplp 7445  df-imp 7446  df-enr 7703  df-nr 7704  df-plr 7705  df-mr 7706  df-0r 7708  df-1r 7709  df-m1r 7710  df-c 7795  df-0 7796  df-1 7797  df-i 7798  df-add 7800  df-mul 7801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator