ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axi2m1 GIF version

Theorem axi2m1 7874
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 7916. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axi2m1 ((i · i) + 1) = 0

Proof of Theorem axi2m1
StepHypRef Expression
1 0r 7749 . . . . . 6 0RR
2 1sr 7750 . . . . . 6 1RR
3 mulcnsr 7834 . . . . . 6 (((0RR ∧ 1RR) ∧ (0RR ∧ 1RR)) → (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩)
41, 2, 1, 2, 3mp4an 427 . . . . 5 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩
5 00sr 7768 . . . . . . . . 9 (0RR → (0R ·R 0R) = 0R)
61, 5ax-mp 5 . . . . . . . 8 (0R ·R 0R) = 0R
7 1idsr 7767 . . . . . . . . . . 11 (1RR → (1R ·R 1R) = 1R)
82, 7ax-mp 5 . . . . . . . . . 10 (1R ·R 1R) = 1R
98oveq2i 5886 . . . . . . . . 9 (-1R ·R (1R ·R 1R)) = (-1R ·R 1R)
10 m1r 7751 . . . . . . . . . 10 -1RR
11 1idsr 7767 . . . . . . . . . 10 (-1RR → (-1R ·R 1R) = -1R)
1210, 11ax-mp 5 . . . . . . . . 9 (-1R ·R 1R) = -1R
139, 12eqtri 2198 . . . . . . . 8 (-1R ·R (1R ·R 1R)) = -1R
146, 13oveq12i 5887 . . . . . . 7 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = (0R +R -1R)
15 addcomsrg 7754 . . . . . . . 8 ((0RR ∧ -1RR) → (0R +R -1R) = (-1R +R 0R))
161, 10, 15mp2an 426 . . . . . . 7 (0R +R -1R) = (-1R +R 0R)
17 0idsr 7766 . . . . . . . 8 (-1RR → (-1R +R 0R) = -1R)
1810, 17ax-mp 5 . . . . . . 7 (-1R +R 0R) = -1R
1914, 16, 183eqtri 2202 . . . . . 6 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = -1R
20 00sr 7768 . . . . . . . . 9 (1RR → (1R ·R 0R) = 0R)
212, 20ax-mp 5 . . . . . . . 8 (1R ·R 0R) = 0R
22 1idsr 7767 . . . . . . . . 9 (0RR → (0R ·R 1R) = 0R)
231, 22ax-mp 5 . . . . . . . 8 (0R ·R 1R) = 0R
2421, 23oveq12i 5887 . . . . . . 7 ((1R ·R 0R) +R (0R ·R 1R)) = (0R +R 0R)
25 0idsr 7766 . . . . . . . 8 (0RR → (0R +R 0R) = 0R)
261, 25ax-mp 5 . . . . . . 7 (0R +R 0R) = 0R
2724, 26eqtri 2198 . . . . . 6 ((1R ·R 0R) +R (0R ·R 1R)) = 0R
2819, 27opeq12i 3784 . . . . 5 ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩ = ⟨-1R, 0R
294, 28eqtri 2198 . . . 4 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨-1R, 0R
3029oveq1i 5885 . . 3 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = (⟨-1R, 0R⟩ + ⟨1R, 0R⟩)
31 addresr 7836 . . . 4 ((-1RR ∧ 1RR) → (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R⟩)
3210, 2, 31mp2an 426 . . 3 (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R
33 m1p1sr 7759 . . . 4 (-1R +R 1R) = 0R
3433opeq1i 3782 . . 3 ⟨(-1R +R 1R), 0R⟩ = ⟨0R, 0R
3530, 32, 343eqtri 2202 . 2 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = ⟨0R, 0R
36 df-i 7820 . . . 4 i = ⟨0R, 1R
3736, 36oveq12i 5887 . . 3 (i · i) = (⟨0R, 1R⟩ · ⟨0R, 1R⟩)
38 df-1 7819 . . 3 1 = ⟨1R, 0R
3937, 38oveq12i 5887 . 2 ((i · i) + 1) = ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩)
40 df-0 7818 . 2 0 = ⟨0R, 0R
4135, 39, 403eqtr4i 2208 1 ((i · i) + 1) = 0
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  cop 3596  (class class class)co 5875  Rcnr 7296  0Rc0r 7297  1Rc1r 7298  -1Rcm1r 7299   +R cplr 7300   ·R cmr 7301  0cc0 7811  1c1 7812  ici 7813   + caddc 7814   · cmul 7816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-eprel 4290  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-1o 6417  df-2o 6418  df-oadd 6421  df-omul 6422  df-er 6535  df-ec 6537  df-qs 6541  df-ni 7303  df-pli 7304  df-mi 7305  df-lti 7306  df-plpq 7343  df-mpq 7344  df-enq 7346  df-nqqs 7347  df-plqqs 7348  df-mqqs 7349  df-1nqqs 7350  df-rq 7351  df-ltnqqs 7352  df-enq0 7423  df-nq0 7424  df-0nq0 7425  df-plq0 7426  df-mq0 7427  df-inp 7465  df-i1p 7466  df-iplp 7467  df-imp 7468  df-enr 7725  df-nr 7726  df-plr 7727  df-mr 7728  df-0r 7730  df-1r 7731  df-m1r 7732  df-c 7817  df-0 7818  df-1 7819  df-i 7820  df-add 7822  df-mul 7823
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator