ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axi2m1 GIF version

Theorem axi2m1 7995
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 8037. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axi2m1 ((i · i) + 1) = 0

Proof of Theorem axi2m1
StepHypRef Expression
1 0r 7870 . . . . . 6 0RR
2 1sr 7871 . . . . . 6 1RR
3 mulcnsr 7955 . . . . . 6 (((0RR ∧ 1RR) ∧ (0RR ∧ 1RR)) → (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩)
41, 2, 1, 2, 3mp4an 427 . . . . 5 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩
5 00sr 7889 . . . . . . . . 9 (0RR → (0R ·R 0R) = 0R)
61, 5ax-mp 5 . . . . . . . 8 (0R ·R 0R) = 0R
7 1idsr 7888 . . . . . . . . . . 11 (1RR → (1R ·R 1R) = 1R)
82, 7ax-mp 5 . . . . . . . . . 10 (1R ·R 1R) = 1R
98oveq2i 5962 . . . . . . . . 9 (-1R ·R (1R ·R 1R)) = (-1R ·R 1R)
10 m1r 7872 . . . . . . . . . 10 -1RR
11 1idsr 7888 . . . . . . . . . 10 (-1RR → (-1R ·R 1R) = -1R)
1210, 11ax-mp 5 . . . . . . . . 9 (-1R ·R 1R) = -1R
139, 12eqtri 2227 . . . . . . . 8 (-1R ·R (1R ·R 1R)) = -1R
146, 13oveq12i 5963 . . . . . . 7 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = (0R +R -1R)
15 addcomsrg 7875 . . . . . . . 8 ((0RR ∧ -1RR) → (0R +R -1R) = (-1R +R 0R))
161, 10, 15mp2an 426 . . . . . . 7 (0R +R -1R) = (-1R +R 0R)
17 0idsr 7887 . . . . . . . 8 (-1RR → (-1R +R 0R) = -1R)
1810, 17ax-mp 5 . . . . . . 7 (-1R +R 0R) = -1R
1914, 16, 183eqtri 2231 . . . . . 6 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = -1R
20 00sr 7889 . . . . . . . . 9 (1RR → (1R ·R 0R) = 0R)
212, 20ax-mp 5 . . . . . . . 8 (1R ·R 0R) = 0R
22 1idsr 7888 . . . . . . . . 9 (0RR → (0R ·R 1R) = 0R)
231, 22ax-mp 5 . . . . . . . 8 (0R ·R 1R) = 0R
2421, 23oveq12i 5963 . . . . . . 7 ((1R ·R 0R) +R (0R ·R 1R)) = (0R +R 0R)
25 0idsr 7887 . . . . . . . 8 (0RR → (0R +R 0R) = 0R)
261, 25ax-mp 5 . . . . . . 7 (0R +R 0R) = 0R
2724, 26eqtri 2227 . . . . . 6 ((1R ·R 0R) +R (0R ·R 1R)) = 0R
2819, 27opeq12i 3826 . . . . 5 ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩ = ⟨-1R, 0R
294, 28eqtri 2227 . . . 4 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨-1R, 0R
3029oveq1i 5961 . . 3 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = (⟨-1R, 0R⟩ + ⟨1R, 0R⟩)
31 addresr 7957 . . . 4 ((-1RR ∧ 1RR) → (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R⟩)
3210, 2, 31mp2an 426 . . 3 (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R
33 m1p1sr 7880 . . . 4 (-1R +R 1R) = 0R
3433opeq1i 3824 . . 3 ⟨(-1R +R 1R), 0R⟩ = ⟨0R, 0R
3530, 32, 343eqtri 2231 . 2 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = ⟨0R, 0R
36 df-i 7941 . . . 4 i = ⟨0R, 1R
3736, 36oveq12i 5963 . . 3 (i · i) = (⟨0R, 1R⟩ · ⟨0R, 1R⟩)
38 df-1 7940 . . 3 1 = ⟨1R, 0R
3937, 38oveq12i 5963 . 2 ((i · i) + 1) = ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩)
40 df-0 7939 . 2 0 = ⟨0R, 0R
4135, 39, 403eqtr4i 2237 1 ((i · i) + 1) = 0
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  cop 3637  (class class class)co 5951  Rcnr 7417  0Rc0r 7418  1Rc1r 7419  -1Rcm1r 7420   +R cplr 7421   ·R cmr 7422  0cc0 7932  1c1 7933  ici 7934   + caddc 7935   · cmul 7937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-eprel 4340  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-1o 6509  df-2o 6510  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-pli 7425  df-mi 7426  df-lti 7427  df-plpq 7464  df-mpq 7465  df-enq 7467  df-nqqs 7468  df-plqqs 7469  df-mqqs 7470  df-1nqqs 7471  df-rq 7472  df-ltnqqs 7473  df-enq0 7544  df-nq0 7545  df-0nq0 7546  df-plq0 7547  df-mq0 7548  df-inp 7586  df-i1p 7587  df-iplp 7588  df-imp 7589  df-enr 7846  df-nr 7847  df-plr 7848  df-mr 7849  df-0r 7851  df-1r 7852  df-m1r 7853  df-c 7938  df-0 7939  df-1 7940  df-i 7941  df-add 7943  df-mul 7944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator