ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axi2m1 GIF version

Theorem axi2m1 8030
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 8072. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axi2m1 ((i · i) + 1) = 0

Proof of Theorem axi2m1
StepHypRef Expression
1 0r 7905 . . . . . 6 0RR
2 1sr 7906 . . . . . 6 1RR
3 mulcnsr 7990 . . . . . 6 (((0RR ∧ 1RR) ∧ (0RR ∧ 1RR)) → (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩)
41, 2, 1, 2, 3mp4an 427 . . . . 5 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩
5 00sr 7924 . . . . . . . . 9 (0RR → (0R ·R 0R) = 0R)
61, 5ax-mp 5 . . . . . . . 8 (0R ·R 0R) = 0R
7 1idsr 7923 . . . . . . . . . . 11 (1RR → (1R ·R 1R) = 1R)
82, 7ax-mp 5 . . . . . . . . . 10 (1R ·R 1R) = 1R
98oveq2i 5985 . . . . . . . . 9 (-1R ·R (1R ·R 1R)) = (-1R ·R 1R)
10 m1r 7907 . . . . . . . . . 10 -1RR
11 1idsr 7923 . . . . . . . . . 10 (-1RR → (-1R ·R 1R) = -1R)
1210, 11ax-mp 5 . . . . . . . . 9 (-1R ·R 1R) = -1R
139, 12eqtri 2230 . . . . . . . 8 (-1R ·R (1R ·R 1R)) = -1R
146, 13oveq12i 5986 . . . . . . 7 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = (0R +R -1R)
15 addcomsrg 7910 . . . . . . . 8 ((0RR ∧ -1RR) → (0R +R -1R) = (-1R +R 0R))
161, 10, 15mp2an 426 . . . . . . 7 (0R +R -1R) = (-1R +R 0R)
17 0idsr 7922 . . . . . . . 8 (-1RR → (-1R +R 0R) = -1R)
1810, 17ax-mp 5 . . . . . . 7 (-1R +R 0R) = -1R
1914, 16, 183eqtri 2234 . . . . . 6 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = -1R
20 00sr 7924 . . . . . . . . 9 (1RR → (1R ·R 0R) = 0R)
212, 20ax-mp 5 . . . . . . . 8 (1R ·R 0R) = 0R
22 1idsr 7923 . . . . . . . . 9 (0RR → (0R ·R 1R) = 0R)
231, 22ax-mp 5 . . . . . . . 8 (0R ·R 1R) = 0R
2421, 23oveq12i 5986 . . . . . . 7 ((1R ·R 0R) +R (0R ·R 1R)) = (0R +R 0R)
25 0idsr 7922 . . . . . . . 8 (0RR → (0R +R 0R) = 0R)
261, 25ax-mp 5 . . . . . . 7 (0R +R 0R) = 0R
2724, 26eqtri 2230 . . . . . 6 ((1R ·R 0R) +R (0R ·R 1R)) = 0R
2819, 27opeq12i 3841 . . . . 5 ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩ = ⟨-1R, 0R
294, 28eqtri 2230 . . . 4 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨-1R, 0R
3029oveq1i 5984 . . 3 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = (⟨-1R, 0R⟩ + ⟨1R, 0R⟩)
31 addresr 7992 . . . 4 ((-1RR ∧ 1RR) → (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R⟩)
3210, 2, 31mp2an 426 . . 3 (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R
33 m1p1sr 7915 . . . 4 (-1R +R 1R) = 0R
3433opeq1i 3839 . . 3 ⟨(-1R +R 1R), 0R⟩ = ⟨0R, 0R
3530, 32, 343eqtri 2234 . 2 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = ⟨0R, 0R
36 df-i 7976 . . . 4 i = ⟨0R, 1R
3736, 36oveq12i 5986 . . 3 (i · i) = (⟨0R, 1R⟩ · ⟨0R, 1R⟩)
38 df-1 7975 . . 3 1 = ⟨1R, 0R
3937, 38oveq12i 5986 . 2 ((i · i) + 1) = ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩)
40 df-0 7974 . 2 0 = ⟨0R, 0R
4135, 39, 403eqtr4i 2240 1 ((i · i) + 1) = 0
Colors of variables: wff set class
Syntax hints:   = wceq 1375  wcel 2180  cop 3649  (class class class)co 5974  Rcnr 7452  0Rc0r 7453  1Rc1r 7454  -1Rcm1r 7455   +R cplr 7456   ·R cmr 7457  0cc0 7967  1c1 7968  ici 7969   + caddc 7970   · cmul 7972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-2o 6533  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-pli 7460  df-mi 7461  df-lti 7462  df-plpq 7499  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-plqqs 7504  df-mqqs 7505  df-1nqqs 7506  df-rq 7507  df-ltnqqs 7508  df-enq0 7579  df-nq0 7580  df-0nq0 7581  df-plq0 7582  df-mq0 7583  df-inp 7621  df-i1p 7622  df-iplp 7623  df-imp 7624  df-enr 7881  df-nr 7882  df-plr 7883  df-mr 7884  df-0r 7886  df-1r 7887  df-m1r 7888  df-c 7973  df-0 7974  df-1 7975  df-i 7976  df-add 7978  df-mul 7979
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator