Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-i2m1 | Unicode version |
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, justified by Theorem axi2m1 7837. (Contributed by NM, 29-Jan-1995.) |
Ref | Expression |
---|---|
ax-i2m1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 7776 | . . . 4 | |
2 | cmul 7779 | . . . 4 | |
3 | 1, 1, 2 | co 5853 | . . 3 |
4 | c1 7775 | . . 3 | |
5 | caddc 7777 | . . 3 | |
6 | 3, 4, 5 | co 5853 | . 2 |
7 | cc0 7774 | . 2 | |
8 | 6, 7 | wceq 1348 | 1 |
Colors of variables: wff set class |
This axiom is referenced by: 0cn 7912 ine0 8313 ixi 8502 inelr 8503 |
Copyright terms: Public domain | W3C validator |