ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixi GIF version

Theorem ixi 8726
Description: i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
ixi (i · i) = -1

Proof of Theorem ixi
StepHypRef Expression
1 df-neg 8316 . 2 -1 = (0 − 1)
2 ax-i2m1 8100 . . 3 ((i · i) + 1) = 0
3 0cn 8134 . . . 4 0 ∈ ℂ
4 ax-1cn 8088 . . . 4 1 ∈ ℂ
5 ax-icn 8090 . . . . 5 i ∈ ℂ
65, 5mulcli 8147 . . . 4 (i · i) ∈ ℂ
73, 4, 6subadd2i 8430 . . 3 ((0 − 1) = (i · i) ↔ ((i · i) + 1) = 0)
82, 7mpbir 146 . 2 (0 − 1) = (i · i)
91, 8eqtr2i 2251 1 (i · i) = -1
Colors of variables: wff set class
Syntax hints:   = wceq 1395  (class class class)co 6000  0cc0 7995  1c1 7996  ici 7997   + caddc 7998   · cmul 8000  cmin 8313  -cneg 8314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4628  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sub 8315  df-neg 8316
This theorem is referenced by:  inelr  8727  mulreim  8747  recextlem1  8794  cju  9104  irec  10856  i2  10857  crre  11363  remim  11366  remullem  11377  absi  11565  cosadd  12243  absefib  12277  efieq1re  12278  demoivreALT  12280
  Copyright terms: Public domain W3C validator