Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdceq GIF version

Theorem bdceq 15916
Description: Equality property for the predicate BOUNDED. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdceq.1 𝐴 = 𝐵
Assertion
Ref Expression
bdceq (BOUNDED 𝐴BOUNDED 𝐵)

Proof of Theorem bdceq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bdceq.1 . . . . 5 𝐴 = 𝐵
21eleq2i 2273 . . . 4 (𝑥𝐴𝑥𝐵)
32bdeq 15897 . . 3 (BOUNDED 𝑥𝐴BOUNDED 𝑥𝐵)
43albii 1494 . 2 (∀𝑥BOUNDED 𝑥𝐴 ↔ ∀𝑥BOUNDED 𝑥𝐵)
5 df-bdc 15915 . 2 (BOUNDED 𝐴 ↔ ∀𝑥BOUNDED 𝑥𝐴)
6 df-bdc 15915 . 2 (BOUNDED 𝐵 ↔ ∀𝑥BOUNDED 𝑥𝐵)
74, 5, 63bitr4i 212 1 (BOUNDED 𝐴BOUNDED 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1371   = wceq 1373  wcel 2177  BOUNDED wbd 15886  BOUNDED wbdc 15914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2188  ax-bd0 15887
This theorem depends on definitions:  df-bi 117  df-cleq 2199  df-clel 2202  df-bdc 15915
This theorem is referenced by:  bdceqi  15917
  Copyright terms: Public domain W3C validator