Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdceq GIF version

Theorem bdceq 15279
Description: Equality property for the predicate BOUNDED. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdceq.1 𝐴 = 𝐵
Assertion
Ref Expression
bdceq (BOUNDED 𝐴BOUNDED 𝐵)

Proof of Theorem bdceq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bdceq.1 . . . . 5 𝐴 = 𝐵
21eleq2i 2260 . . . 4 (𝑥𝐴𝑥𝐵)
32bdeq 15260 . . 3 (BOUNDED 𝑥𝐴BOUNDED 𝑥𝐵)
43albii 1481 . 2 (∀𝑥BOUNDED 𝑥𝐴 ↔ ∀𝑥BOUNDED 𝑥𝐵)
5 df-bdc 15278 . 2 (BOUNDED 𝐴 ↔ ∀𝑥BOUNDED 𝑥𝐴)
6 df-bdc 15278 . 2 (BOUNDED 𝐵 ↔ ∀𝑥BOUNDED 𝑥𝐵)
74, 5, 63bitr4i 212 1 (BOUNDED 𝐴BOUNDED 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1362   = wceq 1364  wcel 2164  BOUNDED wbd 15249  BOUNDED wbdc 15277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175  ax-bd0 15250
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-clel 2189  df-bdc 15278
This theorem is referenced by:  bdceqi  15280
  Copyright terms: Public domain W3C validator