Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bd0 GIF version

Theorem bd0 15578
Description: A formula equivalent to a bounded one is bounded. See also bd0r 15579. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bd0.min BOUNDED 𝜑
bd0.maj (𝜑𝜓)
Assertion
Ref Expression
bd0 BOUNDED 𝜓

Proof of Theorem bd0
StepHypRef Expression
1 bd0.min . 2 BOUNDED 𝜑
2 bd0.maj . . 3 (𝜑𝜓)
32ax-bd0 15567 . 2 (BOUNDED 𝜑BOUNDED 𝜓)
41, 3ax-mp 5 1 BOUNDED 𝜓
Colors of variables: wff set class
Syntax hints:  wb 105  BOUNDED wbd 15566
This theorem was proved from axioms:  ax-mp 5  ax-bd0 15567
This theorem is referenced by:  bd0r  15579  bdth  15585  bdnth  15588  bdnthALT  15589  bdph  15604  bdsbc  15612  bdsnss  15627  bdcint  15631  bdeqsuc  15635  bdcriota  15637  bj-axun2  15669
  Copyright terms: Public domain W3C validator