Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsbcALT GIF version

Theorem bdsbcALT 13701
Description: Alternate proof of bdsbc 13700. (Contributed by BJ, 16-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bdcsbc.1 BOUNDED 𝜑
Assertion
Ref Expression
bdsbcALT BOUNDED [𝑦 / 𝑥]𝜑

Proof of Theorem bdsbcALT
StepHypRef Expression
1 bdcsbc.1 . . 3 BOUNDED 𝜑
21bdab 13680 . 2 BOUNDED 𝑦 ∈ {𝑥𝜑}
3 df-sbc 2951 . 2 ([𝑦 / 𝑥]𝜑𝑦 ∈ {𝑥𝜑})
42, 3bd0r 13667 1 BOUNDED [𝑦 / 𝑥]𝜑
Colors of variables: wff set class
Syntax hints:  wcel 2136  {cab 2151  [wsbc 2950  BOUNDED wbd 13654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-bd0 13655  ax-bdsb 13664
This theorem depends on definitions:  df-bi 116  df-clab 2152  df-sbc 2951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator