Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdccsb GIF version

Theorem bdccsb 15297
Description: A class resulting from proper substitution of a setvar for a setvar in a bounded class is bounded. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdccsb.1 BOUNDED 𝐴
Assertion
Ref Expression
bdccsb BOUNDED 𝑦 / 𝑥𝐴

Proof of Theorem bdccsb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdccsb.1 . . . . 5 BOUNDED 𝐴
21bdeli 15283 . . . 4 BOUNDED 𝑧𝐴
32bdsbc 15295 . . 3 BOUNDED [𝑦 / 𝑥]𝑧𝐴
43bdcab 15286 . 2 BOUNDED {𝑧[𝑦 / 𝑥]𝑧𝐴}
5 df-csb 3081 . 2 𝑦 / 𝑥𝐴 = {𝑧[𝑦 / 𝑥]𝑧𝐴}
64, 5bdceqir 15281 1 BOUNDED 𝑦 / 𝑥𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2164  {cab 2179  [wsbc 2985  csb 3080  BOUNDED wbdc 15277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175  ax-bd0 15250  ax-bdsb 15259
This theorem depends on definitions:  df-bi 117  df-clab 2180  df-cleq 2186  df-clel 2189  df-sbc 2986  df-csb 3081  df-bdc 15278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator