Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdccsb GIF version

Theorem bdccsb 16223
Description: A class resulting from proper substitution of a setvar for a setvar in a bounded class is bounded. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdccsb.1 BOUNDED 𝐴
Assertion
Ref Expression
bdccsb BOUNDED 𝑦 / 𝑥𝐴

Proof of Theorem bdccsb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdccsb.1 . . . . 5 BOUNDED 𝐴
21bdeli 16209 . . . 4 BOUNDED 𝑧𝐴
32bdsbc 16221 . . 3 BOUNDED [𝑦 / 𝑥]𝑧𝐴
43bdcab 16212 . 2 BOUNDED {𝑧[𝑦 / 𝑥]𝑧𝐴}
5 df-csb 3125 . 2 𝑦 / 𝑥𝐴 = {𝑧[𝑦 / 𝑥]𝑧𝐴}
64, 5bdceqir 16207 1 BOUNDED 𝑦 / 𝑥𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2200  {cab 2215  [wsbc 3028  csb 3124  BOUNDED wbdc 16203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211  ax-bd0 16176  ax-bdsb 16185
This theorem depends on definitions:  df-bi 117  df-clab 2216  df-cleq 2222  df-clel 2225  df-sbc 3029  df-csb 3125  df-bdc 16204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator