Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdccsb GIF version

Theorem bdccsb 13635
Description: A class resulting from proper substitution of a setvar for a setvar in a bounded class is bounded. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdccsb.1 BOUNDED 𝐴
Assertion
Ref Expression
bdccsb BOUNDED 𝑦 / 𝑥𝐴

Proof of Theorem bdccsb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdccsb.1 . . . . 5 BOUNDED 𝐴
21bdeli 13621 . . . 4 BOUNDED 𝑧𝐴
32bdsbc 13633 . . 3 BOUNDED [𝑦 / 𝑥]𝑧𝐴
43bdcab 13624 . 2 BOUNDED {𝑧[𝑦 / 𝑥]𝑧𝐴}
5 df-csb 3044 . 2 𝑦 / 𝑥𝐴 = {𝑧[𝑦 / 𝑥]𝑧𝐴}
64, 5bdceqir 13619 1 BOUNDED 𝑦 / 𝑥𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2135  {cab 2150  [wsbc 2949  csb 3043  BOUNDED wbdc 13615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1434  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-4 1497  ax-17 1513  ax-ial 1521  ax-ext 2146  ax-bd0 13588  ax-bdsb 13597
This theorem depends on definitions:  df-bi 116  df-clab 2151  df-cleq 2157  df-clel 2160  df-sbc 2950  df-csb 3044  df-bdc 13616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator