Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcvv GIF version

Theorem bdcvv 15657
Description: The universal class is bounded. The formulation may sound strange, but recall that here, "bounded" means "Δ0". (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcvv BOUNDED V

Proof of Theorem bdcvv
StepHypRef Expression
1 vex 2774 . . 3 𝑥 ∈ V
21bdth 15631 . 2 BOUNDED 𝑥 ∈ V
32bdelir 15647 1 BOUNDED V
Colors of variables: wff set class
Syntax hints:  wcel 2175  Vcvv 2771  BOUNDED wbdc 15640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-ext 2186  ax-bd0 15613  ax-bdim 15614  ax-bdeq 15620
This theorem depends on definitions:  df-bi 117  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-v 2773  df-bdc 15641
This theorem is referenced by:  bdcnulALT  15666
  Copyright terms: Public domain W3C validator