Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcvv GIF version

Theorem bdcvv 16178
Description: The universal class is bounded. The formulation may sound strange, but recall that here, "bounded" means "Δ0". (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcvv BOUNDED V

Proof of Theorem bdcvv
StepHypRef Expression
1 vex 2802 . . 3 𝑥 ∈ V
21bdth 16152 . 2 BOUNDED 𝑥 ∈ V
32bdelir 16168 1 BOUNDED V
Colors of variables: wff set class
Syntax hints:  wcel 2200  Vcvv 2799  BOUNDED wbdc 16161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211  ax-bd0 16134  ax-bdim 16135  ax-bdeq 16141
This theorem depends on definitions:  df-bi 117  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801  df-bdc 16162
This theorem is referenced by:  bdcnulALT  16187
  Copyright terms: Public domain W3C validator