Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcvv GIF version

Theorem bdcvv 15087
Description: The universal class is bounded. The formulation may sound strange, but recall that here, "bounded" means "Δ0". (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcvv BOUNDED V

Proof of Theorem bdcvv
StepHypRef Expression
1 vex 2755 . . 3 𝑥 ∈ V
21bdth 15061 . 2 BOUNDED 𝑥 ∈ V
32bdelir 15077 1 BOUNDED V
Colors of variables: wff set class
Syntax hints:  wcel 2160  Vcvv 2752  BOUNDED wbdc 15070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2171  ax-bd0 15043  ax-bdim 15044  ax-bdeq 15050
This theorem depends on definitions:  df-bi 117  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-v 2754  df-bdc 15071
This theorem is referenced by:  bdcnulALT  15096
  Copyright terms: Public domain W3C validator