Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcvv GIF version

Theorem bdcvv 15589
Description: The universal class is bounded. The formulation may sound strange, but recall that here, "bounded" means "Δ0". (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcvv BOUNDED V

Proof of Theorem bdcvv
StepHypRef Expression
1 vex 2766 . . 3 𝑥 ∈ V
21bdth 15563 . 2 BOUNDED 𝑥 ∈ V
32bdelir 15579 1 BOUNDED V
Colors of variables: wff set class
Syntax hints:  wcel 2167  Vcvv 2763  BOUNDED wbdc 15572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178  ax-bd0 15545  ax-bdim 15546  ax-bdeq 15552
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765  df-bdc 15573
This theorem is referenced by:  bdcnulALT  15598
  Copyright terms: Public domain W3C validator