Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcvv GIF version

Theorem bdcvv 15931
Description: The universal class is bounded. The formulation may sound strange, but recall that here, "bounded" means "Δ0". (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcvv BOUNDED V

Proof of Theorem bdcvv
StepHypRef Expression
1 vex 2776 . . 3 𝑥 ∈ V
21bdth 15905 . 2 BOUNDED 𝑥 ∈ V
32bdelir 15921 1 BOUNDED V
Colors of variables: wff set class
Syntax hints:  wcel 2177  Vcvv 2773  BOUNDED wbdc 15914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2188  ax-bd0 15887  ax-bdim 15888  ax-bdeq 15894
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-v 2775  df-bdc 15915
This theorem is referenced by:  bdcnulALT  15940
  Copyright terms: Public domain W3C validator