ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2th GIF version

Theorem 2th 173
Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
2th.1 𝜑
2th.2 𝜓
Assertion
Ref Expression
2th (𝜑𝜓)

Proof of Theorem 2th
StepHypRef Expression
1 2th.2 . . 3 𝜓
21a1i 9 . 2 (𝜑𝜓)
3 2th.1 . . 3 𝜑
43a1i 9 . 2 (𝜓𝜑)
52, 4impbii 125 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wb 104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  trujust  1292  dftru2  1298  bitru  1302  vjust  2621  pwv  3658  int0  3708  0iin  3794  snnex  4283  ruv  4379  fo1st  5942  fo2nd  5943  eqer  6338  ener  6550  rexfiuz  10483  bdth  11995
  Copyright terms: Public domain W3C validator