![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2th | GIF version |
Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
2th.1 | ⊢ 𝜑 |
2th.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
2th | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2th.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
3 | 2th.1 | . . 3 ⊢ 𝜑 | |
4 | 3 | a1i 9 | . 2 ⊢ (𝜓 → 𝜑) |
5 | 2, 4 | impbii 126 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: trujust 1355 dftru2 1361 bitru 1365 vjust 2739 pwv 3809 int0 3859 0iin 3946 snnex 4449 ruv 4550 fo1st 6158 fo2nd 6159 eqer 6567 ener 6779 rexfiuz 10998 bdth 14586 |
Copyright terms: Public domain | W3C validator |