| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2th | GIF version | ||
| Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| 2th.1 | ⊢ 𝜑 |
| 2th.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| 2th | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2th.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | 2th.1 | . . 3 ⊢ 𝜑 | |
| 4 | 3 | a1i 9 | . 2 ⊢ (𝜓 → 𝜑) |
| 5 | 2, 4 | impbii 126 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: trujust 1374 dftru2 1380 bitru 1384 vjust 2772 pwv 3848 int0 3898 0iin 3985 snnex 4494 ruv 4597 fo1st 6242 fo2nd 6243 eqer 6651 ener 6870 rexfiuz 11242 bdth 15700 |
| Copyright terms: Public domain | W3C validator |