ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2th GIF version

Theorem 2th 173
Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
2th.1 𝜑
2th.2 𝜓
Assertion
Ref Expression
2th (𝜑𝜓)

Proof of Theorem 2th
StepHypRef Expression
1 2th.2 . . 3 𝜓
21a1i 9 . 2 (𝜑𝜓)
3 2th.1 . . 3 𝜑
43a1i 9 . 2 (𝜓𝜑)
52, 4impbii 125 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  trujust  1350  dftru2  1356  bitru  1360  vjust  2731  pwv  3793  int0  3843  0iin  3929  snnex  4431  ruv  4532  fo1st  6134  fo2nd  6135  eqer  6543  ener  6755  rexfiuz  10946  bdth  13831
  Copyright terms: Public domain W3C validator