ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2th GIF version

Theorem 2th 174
Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
2th.1 𝜑
2th.2 𝜓
Assertion
Ref Expression
2th (𝜑𝜓)

Proof of Theorem 2th
StepHypRef Expression
1 2th.2 . . 3 𝜓
21a1i 9 . 2 (𝜑𝜓)
3 2th.1 . . 3 𝜑
43a1i 9 . 2 (𝜓𝜑)
52, 4impbii 126 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  trujust  1397  dftru2  1403  bitru  1407  vjust  2800  pwv  3886  int0  3936  0iin  4023  snnex  4538  ruv  4641  fo1st  6301  fo2nd  6302  eqer  6710  ener  6929  rexfiuz  11495  bdth  16152
  Copyright terms: Public domain W3C validator