![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimp | GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 117 | . . 3 ⊢ (((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
2 | 1 | simpli 111 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
3 | 2 | simpld 112 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimpi 120 bicom1 131 biimpd 144 ibd 178 pm5.74 179 bi3ant 224 pm5.501 244 pm5.32d 450 notbi 667 pm5.19 707 con4biddc 858 con1biimdc 874 bijadc 883 pclem6 1385 albi 1479 exbi 1615 equsexd 1740 cbv2h 1759 cbv2w 1761 sbiedh 1798 eumo0 2073 ceqsalt 2786 vtoclgft 2810 spcgft 2837 pm13.183 2898 reu6 2949 reu3 2950 sbciegft 3016 ddifstab 3291 exmidsssnc 4232 fv3 5577 prnmaxl 7548 prnminu 7549 elabgft1 15270 elabgf2 15272 bj-axemptylem 15384 bj-inf2vn 15466 bj-inf2vn2 15467 bj-nn0sucALT 15470 |
Copyright terms: Public domain | W3C validator |