| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimp | GIF version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi 117 | . . 3 ⊢ (((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
| 2 | 1 | simpli 111 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| 3 | 2 | simpld 112 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpi 120 bicom1 131 biimpd 144 ibd 178 pm5.74 179 bi3ant 224 pm5.501 244 pm5.32d 450 notbi 670 pm5.19 711 con4biddc 862 con1biimdc 878 bijadc 887 pclem6 1416 albi 1514 exbi 1650 equsexd 1775 cbv2h 1794 cbv2w 1796 sbiedh 1833 eumo0 2108 ceqsalt 2826 vtoclgft 2851 spcgft 2880 pm13.183 2941 reu6 2992 reu3 2993 sbciegft 3059 ddifstab 3336 exmidsssnc 4286 fv3 5649 prnmaxl 7671 prnminu 7672 elabgft1 16100 elabgf2 16102 bj-axemptylem 16213 bj-inf2vn 16295 bj-inf2vn2 16296 bj-nn0sucALT 16299 |
| Copyright terms: Public domain | W3C validator |