![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimp | GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 117 | . . 3 ⊢ (((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
2 | 1 | simpli 111 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
3 | 2 | simpld 112 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimpi 120 bicom1 131 biimpd 144 ibd 178 pm5.74 179 bi3ant 224 pm5.501 244 pm5.32d 450 notbi 667 pm5.19 707 con4biddc 858 con1biimdc 874 bijadc 883 pclem6 1385 albi 1479 exbi 1615 equsexd 1740 cbv2h 1759 cbv2w 1761 sbiedh 1798 eumo0 2073 ceqsalt 2786 vtoclgft 2811 spcgft 2838 pm13.183 2899 reu6 2950 reu3 2951 sbciegft 3017 ddifstab 3292 exmidsssnc 4233 fv3 5578 prnmaxl 7550 prnminu 7551 elabgft1 15340 elabgf2 15342 bj-axemptylem 15454 bj-inf2vn 15536 bj-inf2vn2 15537 bj-nn0sucALT 15540 |
Copyright terms: Public domain | W3C validator |