| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimp | GIF version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi 117 | . . 3 ⊢ (((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
| 2 | 1 | simpli 111 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| 3 | 2 | simpld 112 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpi 120 bicom1 131 biimpd 144 ibd 178 pm5.74 179 bi3ant 224 pm5.501 244 pm5.32d 450 notbi 667 pm5.19 707 con4biddc 858 con1biimdc 874 bijadc 883 pclem6 1385 albi 1482 exbi 1618 equsexd 1743 cbv2h 1762 cbv2w 1764 sbiedh 1801 eumo0 2076 ceqsalt 2789 vtoclgft 2814 spcgft 2841 pm13.183 2902 reu6 2953 reu3 2954 sbciegft 3020 ddifstab 3295 exmidsssnc 4236 fv3 5581 prnmaxl 7555 prnminu 7556 elabgft1 15424 elabgf2 15426 bj-axemptylem 15538 bj-inf2vn 15620 bj-inf2vn2 15621 bj-nn0sucALT 15624 |
| Copyright terms: Public domain | W3C validator |