![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimp | GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 117 | . . 3 ⊢ (((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
2 | 1 | simpli 111 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
3 | 2 | simpld 112 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimpi 120 bicom1 131 biimpd 144 ibd 178 pm5.74 179 bi3ant 224 pm5.501 244 pm5.32d 450 notbi 667 pm5.19 707 con4biddc 858 con1biimdc 874 bijadc 883 pclem6 1385 albi 1479 exbi 1615 equsexd 1740 cbv2h 1759 cbv2w 1761 sbiedh 1798 eumo0 2069 ceqsalt 2778 vtoclgft 2802 spcgft 2829 pm13.183 2890 reu6 2941 reu3 2942 sbciegft 3008 ddifstab 3282 exmidsssnc 4221 fv3 5557 prnmaxl 7516 prnminu 7517 elabgft1 14983 elabgf2 14985 bj-axemptylem 15097 bj-inf2vn 15179 bj-inf2vn2 15180 bj-nn0sucALT 15183 |
Copyright terms: Public domain | W3C validator |