Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anass | GIF version |
Description: Associative law for conjunction. Theorem *4.32 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
anass | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | 1 | anassrs 398 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜑 ∧ (𝜓 ∧ 𝜒))) |
3 | id 19 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
4 | 3 | anasss 397 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
5 | 2, 4 | impbii 125 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bianass 466 mpan10 471 an12 556 an32 557 an13 558 an31 559 an4 581 3anass 977 sbidm 1844 4exdistr 1909 2sb5 1976 2sb5rf 1982 sbel2x 1991 r2exf 2488 r19.41 2625 ceqsex3v 2772 ceqsrex2v 2862 rexrab 2893 rexrab2 2897 rexss 3214 inass 3337 difin2 3389 difrab 3401 reupick3 3412 inssdif0im 3481 rexdifpr 3609 rexdifsn 3713 unidif0 4151 bnd2 4157 eqvinop 4226 copsexg 4227 uniuni 4434 rabxp 4646 elvvv 4672 rexiunxp 4751 resopab2 4936 ssrnres 5051 elxp4 5096 elxp5 5097 cnvresima 5098 mptpreima 5102 coass 5127 dff1o2 5445 eqfnfv3 5593 rexsupp 5617 isoini 5794 f1oiso 5802 oprabid 5882 dfoprab2 5897 mpoeq123 5909 mpomptx 5941 resoprab2 5947 ovi3 5986 oprabex3 6105 spc2ed 6209 f1od2 6211 brtpos2 6227 mapsnen 6785 xpsnen 6795 xpcomco 6800 xpassen 6804 ltexpi 7286 enq0enq 7380 enq0tr 7383 prnmaxl 7437 prnminu 7438 genpdflem 7456 ltexprlemm 7549 suplocsrlemb 7755 axaddf 7817 axmulf 7818 rexuz 9526 rexuz2 9527 rexrp 9620 elixx3g 9845 elfz2 9959 fzdifsuc 10024 fzind2 10182 divalgb 11871 gcdass 11957 nnwosdc 11981 lcmass 12026 isprm2 12058 infpn2 12398 ntreq0 12847 tx1cn 12984 tx2cn 12985 blres 13149 metrest 13221 elcncf1di 13281 dedekindicclemicc 13325 |
Copyright terms: Public domain | W3C validator |