Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anass | GIF version |
Description: Associative law for conjunction. Theorem *4.32 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
anass | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | 1 | anassrs 398 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜑 ∧ (𝜓 ∧ 𝜒))) |
3 | id 19 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
4 | 3 | anasss 397 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
5 | 2, 4 | impbii 125 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bianass 466 mpan10 471 an12 556 an32 557 an13 558 an31 559 an4 581 3anass 977 sbidm 1844 4exdistr 1909 2sb5 1976 2sb5rf 1982 sbel2x 1991 r2exf 2488 r19.41 2625 ceqsex3v 2772 ceqsrex2v 2862 rexrab 2893 rexrab2 2897 rexss 3214 inass 3337 difin2 3389 difrab 3401 reupick3 3412 inssdif0im 3482 rexdifpr 3611 rexdifsn 3715 unidif0 4153 bnd2 4159 eqvinop 4228 copsexg 4229 uniuni 4436 rabxp 4648 elvvv 4674 rexiunxp 4753 resopab2 4938 ssrnres 5053 elxp4 5098 elxp5 5099 cnvresima 5100 mptpreima 5104 coass 5129 dff1o2 5447 eqfnfv3 5595 rexsupp 5620 isoini 5797 f1oiso 5805 oprabid 5885 dfoprab2 5900 mpoeq123 5912 mpomptx 5944 resoprab2 5950 ovi3 5989 oprabex3 6108 spc2ed 6212 f1od2 6214 brtpos2 6230 mapsnen 6789 xpsnen 6799 xpcomco 6804 xpassen 6808 ltexpi 7299 enq0enq 7393 enq0tr 7396 prnmaxl 7450 prnminu 7451 genpdflem 7469 ltexprlemm 7562 suplocsrlemb 7768 axaddf 7830 axmulf 7831 rexuz 9539 rexuz2 9540 rexrp 9633 elixx3g 9858 elfz2 9972 fzdifsuc 10037 fzind2 10195 divalgb 11884 gcdass 11970 nnwosdc 11994 lcmass 12039 isprm2 12071 infpn2 12411 ntreq0 12926 tx1cn 13063 tx2cn 13064 blres 13228 metrest 13300 elcncf1di 13360 dedekindicclemicc 13404 |
Copyright terms: Public domain | W3C validator |