| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anass | GIF version | ||
| Description: Associative law for conjunction. Theorem *4.32 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| anass | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 2 | 1 | anassrs 400 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| 3 | id 19 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 4 | 3 | anasss 399 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| 5 | 2, 4 | impbii 126 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bianass 469 mpan10 474 an12 561 an32 562 an13 563 an31 564 an4 586 3anass 984 sbidm 1873 4exdistr 1939 2sb5 2010 2sb5rf 2016 sbel2x 2025 r2exf 2523 r19.41 2660 ceqsex3v 2814 ceqsrex2v 2904 rexrab 2935 rexrab2 2939 rexss 3259 inass 3382 difin2 3434 difrab 3446 reupick3 3457 inssdif0im 3527 rexdifpr 3660 rexdifsn 3764 unidif0 4210 bnd2 4216 eqvinop 4286 copsexg 4287 uniuni 4497 rabxp 4711 elvvv 4737 rexiunxp 4819 resopab2 5005 ssrnres 5124 elxp4 5169 elxp5 5170 cnvresima 5171 mptpreima 5175 coass 5200 dff1o2 5526 eqfnfv3 5678 rexsupp 5703 isoini 5886 f1oiso 5894 oprabid 5975 dfoprab2 5991 mpoeq123 6003 mpomptx 6035 resoprab2 6041 ovi3 6082 oprabex3 6213 spc2ed 6318 f1od2 6320 brtpos2 6336 mapsnen 6902 xpsnen 6915 xpcomco 6920 xpassen 6924 ltexpi 7449 enq0enq 7543 enq0tr 7546 prnmaxl 7600 prnminu 7601 genpdflem 7619 ltexprlemm 7712 suplocsrlemb 7918 axaddf 7980 axmulf 7981 rexuz 9700 rexuz2 9701 rexrp 9797 elixx3g 10022 elfz2 10136 fzdifsuc 10202 fzind2 10366 divalgb 12207 gcdass 12307 nnwosdc 12331 lcmass 12378 isprm2 12410 infpn2 12798 fngsum 13191 igsumvalx 13192 issubg3 13499 dfrhm2 13887 ntreq0 14575 tx1cn 14712 tx2cn 14713 blres 14877 metrest 14949 elcncf1di 15022 dedekindicclemicc 15075 fsumdvdsmul 15434 lgsquadlem1 15525 lgsquadlem2 15526 |
| Copyright terms: Public domain | W3C validator |