| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anass | GIF version | ||
| Description: Associative law for conjunction. Theorem *4.32 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| anass | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 2 | 1 | anassrs 400 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| 3 | id 19 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 4 | 3 | anasss 399 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| 5 | 2, 4 | impbii 126 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bianass 469 mpan10 474 an12 561 an32 562 an13 563 an31 564 an4 586 3anass 985 sbidm 1875 4exdistr 1941 2sb5 2012 2sb5rf 2018 sbel2x 2027 r2exf 2526 r19.41 2663 ceqsex3v 2820 ceqsrex2v 2912 rexrab 2943 rexrab2 2947 rexss 3268 inass 3391 difin2 3443 difrab 3455 reupick3 3466 inssdif0im 3536 rexdifpr 3671 rexdifsn 3776 unidif0 4227 bnd2 4233 eqvinop 4305 copsexg 4306 uniuni 4516 rabxp 4730 elvvv 4756 rexiunxp 4838 resopab2 5025 ssrnres 5144 elxp4 5189 elxp5 5190 cnvresima 5191 mptpreima 5195 coass 5220 dff1o2 5549 eqfnfv3 5702 rexsupp 5727 isoini 5910 f1oiso 5918 oprabid 5999 dfoprab2 6015 mpoeq123 6027 mpomptx 6059 resoprab2 6065 ovi3 6106 oprabex3 6237 spc2ed 6342 f1od2 6344 brtpos2 6360 mapsnen 6927 xpsnen 6941 xpcomco 6946 xpassen 6950 ltexpi 7485 enq0enq 7579 enq0tr 7582 prnmaxl 7636 prnminu 7637 genpdflem 7655 ltexprlemm 7748 suplocsrlemb 7954 axaddf 8016 axmulf 8017 rexuz 9736 rexuz2 9737 rexrp 9833 elixx3g 10058 elfz2 10172 fzdifsuc 10238 fzind2 10405 divalgb 12351 gcdass 12451 nnwosdc 12475 lcmass 12522 isprm2 12554 infpn2 12942 fngsum 13335 igsumvalx 13336 issubg3 13643 dfrhm2 14031 ntreq0 14719 tx1cn 14856 tx2cn 14857 blres 15021 metrest 15093 elcncf1di 15166 dedekindicclemicc 15219 fsumdvdsmul 15578 lgsquadlem1 15669 lgsquadlem2 15670 |
| Copyright terms: Public domain | W3C validator |