| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anass | GIF version | ||
| Description: Associative law for conjunction. Theorem *4.32 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| anass | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 2 | 1 | anassrs 400 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| 3 | id 19 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 4 | 3 | anasss 399 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| 5 | 2, 4 | impbii 126 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bianass 469 mpan10 474 an12 561 an32 562 an13 563 an31 564 an4 586 3anass 1006 sbidm 1897 4exdistr 1963 2sb5 2034 2sb5rf 2040 sbel2x 2049 r2exf 2548 r19.41 2686 ceqsex3v 2843 ceqsrex2v 2935 rexrab 2966 rexrab2 2970 rexss 3291 inass 3414 difin2 3466 difrab 3478 reupick3 3489 inssdif0im 3559 rexdifpr 3694 rexdifsn 3800 unidif0 4251 bnd2 4257 eqvinop 4329 copsexg 4330 uniuni 4542 rabxp 4756 elvvv 4782 rexiunxp 4864 resopab2 5052 ssrnres 5171 elxp4 5216 elxp5 5217 cnvresima 5218 mptpreima 5222 coass 5247 dff1o2 5577 eqfnfv3 5734 rexsupp 5759 isoini 5942 f1oiso 5950 oprabid 6033 dfoprab2 6051 mpoeq123 6063 mpomptx 6095 resoprab2 6101 ovi3 6142 oprabex3 6274 spc2ed 6379 f1od2 6381 brtpos2 6397 mapsnen 6964 xpsnen 6980 xpcomco 6985 xpassen 6989 ltexpi 7524 enq0enq 7618 enq0tr 7621 prnmaxl 7675 prnminu 7676 genpdflem 7694 ltexprlemm 7787 suplocsrlemb 7993 axaddf 8055 axmulf 8056 rexuz 9775 rexuz2 9776 rexrp 9872 elixx3g 10097 elfz2 10211 fzdifsuc 10277 fzind2 10445 divalgb 12436 gcdass 12536 nnwosdc 12560 lcmass 12607 isprm2 12639 infpn2 13027 fngsum 13421 igsumvalx 13422 issubg3 13729 dfrhm2 14118 ntreq0 14806 tx1cn 14943 tx2cn 14944 blres 15108 metrest 15180 elcncf1di 15253 dedekindicclemicc 15306 fsumdvdsmul 15665 lgsquadlem1 15756 lgsquadlem2 15757 wlk1walkdom 16070 |
| Copyright terms: Public domain | W3C validator |