| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anass | GIF version | ||
| Description: Associative law for conjunction. Theorem *4.32 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| anass | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 2 | 1 | anassrs 400 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| 3 | id 19 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 4 | 3 | anasss 399 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| 5 | 2, 4 | impbii 126 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bianass 469 mpan10 474 an12 561 an32 562 an13 563 an31 564 an4 586 3anass 984 sbidm 1865 4exdistr 1931 2sb5 2002 2sb5rf 2008 sbel2x 2017 r2exf 2515 r19.41 2652 ceqsex3v 2806 ceqsrex2v 2896 rexrab 2927 rexrab2 2931 rexss 3251 inass 3374 difin2 3426 difrab 3438 reupick3 3449 inssdif0im 3519 rexdifpr 3651 rexdifsn 3755 unidif0 4201 bnd2 4207 eqvinop 4277 copsexg 4278 uniuni 4487 rabxp 4701 elvvv 4727 rexiunxp 4809 resopab2 4994 ssrnres 5113 elxp4 5158 elxp5 5159 cnvresima 5160 mptpreima 5164 coass 5189 dff1o2 5512 eqfnfv3 5664 rexsupp 5689 isoini 5868 f1oiso 5876 oprabid 5957 dfoprab2 5973 mpoeq123 5985 mpomptx 6017 resoprab2 6023 ovi3 6064 oprabex3 6195 spc2ed 6300 f1od2 6302 brtpos2 6318 mapsnen 6879 xpsnen 6889 xpcomco 6894 xpassen 6898 ltexpi 7423 enq0enq 7517 enq0tr 7520 prnmaxl 7574 prnminu 7575 genpdflem 7593 ltexprlemm 7686 suplocsrlemb 7892 axaddf 7954 axmulf 7955 rexuz 9673 rexuz2 9674 rexrp 9770 elixx3g 9995 elfz2 10109 fzdifsuc 10175 fzind2 10334 divalgb 12109 gcdass 12209 nnwosdc 12233 lcmass 12280 isprm2 12312 infpn2 12700 fngsum 13092 igsumvalx 13093 issubg3 13400 dfrhm2 13788 ntreq0 14476 tx1cn 14613 tx2cn 14614 blres 14778 metrest 14850 elcncf1di 14923 dedekindicclemicc 14976 fsumdvdsmul 15335 lgsquadlem1 15426 lgsquadlem2 15427 |
| Copyright terms: Public domain | W3C validator |