Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anass | GIF version |
Description: Associative law for conjunction. Theorem *4.32 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
anass | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | 1 | anassrs 398 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜑 ∧ (𝜓 ∧ 𝜒))) |
3 | id 19 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
4 | 3 | anasss 397 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
5 | 2, 4 | impbii 125 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpan10 466 an12 551 an32 552 an13 553 an31 554 an4 576 3anass 972 sbidm 1839 4exdistr 1904 2sb5 1971 2sb5rf 1977 sbel2x 1986 r2exf 2484 r19.41 2621 ceqsex3v 2768 ceqsrex2v 2858 rexrab 2889 rexrab2 2893 rexss 3209 inass 3332 difin2 3384 difrab 3396 reupick3 3407 inssdif0im 3476 rexdifpr 3604 rexdifsn 3708 unidif0 4146 bnd2 4152 eqvinop 4221 copsexg 4222 uniuni 4429 rabxp 4641 elvvv 4667 rexiunxp 4746 resopab2 4931 ssrnres 5046 elxp4 5091 elxp5 5092 cnvresima 5093 mptpreima 5097 coass 5122 dff1o2 5437 eqfnfv3 5585 rexsupp 5609 isoini 5786 f1oiso 5794 oprabid 5874 dfoprab2 5889 mpoeq123 5901 mpomptx 5933 resoprab2 5939 ovi3 5978 oprabex3 6097 spc2ed 6201 f1od2 6203 brtpos2 6219 mapsnen 6777 xpsnen 6787 xpcomco 6792 xpassen 6796 ltexpi 7278 enq0enq 7372 enq0tr 7375 prnmaxl 7429 prnminu 7430 genpdflem 7448 ltexprlemm 7541 suplocsrlemb 7747 axaddf 7809 axmulf 7810 rexuz 9518 rexuz2 9519 rexrp 9612 elixx3g 9837 elfz2 9951 fzdifsuc 10016 fzind2 10174 divalgb 11862 gcdass 11948 nnwosdc 11972 lcmass 12017 isprm2 12049 infpn2 12389 ntreq0 12772 tx1cn 12909 tx2cn 12910 blres 13074 metrest 13146 elcncf1di 13206 dedekindicclemicc 13250 |
Copyright terms: Public domain | W3C validator |