![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anass | GIF version |
Description: Associative law for conjunction. Theorem *4.32 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
anass | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | 1 | anassrs 400 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜑 ∧ (𝜓 ∧ 𝜒))) |
3 | id 19 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
4 | 3 | anasss 399 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
5 | 2, 4 | impbii 126 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bianass 469 mpan10 474 an12 561 an32 562 an13 563 an31 564 an4 586 3anass 984 sbidm 1862 4exdistr 1928 2sb5 1999 2sb5rf 2005 sbel2x 2014 r2exf 2512 r19.41 2649 ceqsex3v 2803 ceqsrex2v 2893 rexrab 2924 rexrab2 2928 rexss 3247 inass 3370 difin2 3422 difrab 3434 reupick3 3445 inssdif0im 3515 rexdifpr 3647 rexdifsn 3751 unidif0 4197 bnd2 4203 eqvinop 4273 copsexg 4274 uniuni 4483 rabxp 4697 elvvv 4723 rexiunxp 4805 resopab2 4990 ssrnres 5109 elxp4 5154 elxp5 5155 cnvresima 5156 mptpreima 5160 coass 5185 dff1o2 5506 eqfnfv3 5658 rexsupp 5683 isoini 5862 f1oiso 5870 oprabid 5951 dfoprab2 5966 mpoeq123 5978 mpomptx 6010 resoprab2 6016 ovi3 6057 oprabex3 6183 spc2ed 6288 f1od2 6290 brtpos2 6306 mapsnen 6867 xpsnen 6877 xpcomco 6882 xpassen 6886 ltexpi 7399 enq0enq 7493 enq0tr 7496 prnmaxl 7550 prnminu 7551 genpdflem 7569 ltexprlemm 7662 suplocsrlemb 7868 axaddf 7930 axmulf 7931 rexuz 9648 rexuz2 9649 rexrp 9745 elixx3g 9970 elfz2 10084 fzdifsuc 10150 fzind2 10309 divalgb 12069 gcdass 12155 nnwosdc 12179 lcmass 12226 isprm2 12258 infpn2 12616 fngsum 12974 igsumvalx 12975 issubg3 13265 dfrhm2 13653 ntreq0 14311 tx1cn 14448 tx2cn 14449 blres 14613 metrest 14685 elcncf1di 14758 dedekindicclemicc 14811 lgsquadlem1 15234 lgsquadlem2 15235 |
Copyright terms: Public domain | W3C validator |