| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > anass | GIF version | ||
| Description: Associative law for conjunction. Theorem *4.32 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) | 
| Ref | Expression | 
|---|---|
| anass | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 2 | 1 | anassrs 400 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜑 ∧ (𝜓 ∧ 𝜒))) | 
| 3 | id 19 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 4 | 3 | anasss 399 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) | 
| 5 | 2, 4 | impbii 126 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: bianass 469 mpan10 474 an12 561 an32 562 an13 563 an31 564 an4 586 3anass 984 sbidm 1865 4exdistr 1931 2sb5 2002 2sb5rf 2008 sbel2x 2017 r2exf 2515 r19.41 2652 ceqsex3v 2806 ceqsrex2v 2896 rexrab 2927 rexrab2 2931 rexss 3250 inass 3373 difin2 3425 difrab 3437 reupick3 3448 inssdif0im 3518 rexdifpr 3650 rexdifsn 3754 unidif0 4200 bnd2 4206 eqvinop 4276 copsexg 4277 uniuni 4486 rabxp 4700 elvvv 4726 rexiunxp 4808 resopab2 4993 ssrnres 5112 elxp4 5157 elxp5 5158 cnvresima 5159 mptpreima 5163 coass 5188 dff1o2 5509 eqfnfv3 5661 rexsupp 5686 isoini 5865 f1oiso 5873 oprabid 5954 dfoprab2 5969 mpoeq123 5981 mpomptx 6013 resoprab2 6019 ovi3 6060 oprabex3 6186 spc2ed 6291 f1od2 6293 brtpos2 6309 mapsnen 6870 xpsnen 6880 xpcomco 6885 xpassen 6889 ltexpi 7404 enq0enq 7498 enq0tr 7501 prnmaxl 7555 prnminu 7556 genpdflem 7574 ltexprlemm 7667 suplocsrlemb 7873 axaddf 7935 axmulf 7936 rexuz 9654 rexuz2 9655 rexrp 9751 elixx3g 9976 elfz2 10090 fzdifsuc 10156 fzind2 10315 divalgb 12090 gcdass 12182 nnwosdc 12206 lcmass 12253 isprm2 12285 infpn2 12673 fngsum 13031 igsumvalx 13032 issubg3 13322 dfrhm2 13710 ntreq0 14368 tx1cn 14505 tx2cn 14506 blres 14670 metrest 14742 elcncf1di 14815 dedekindicclemicc 14868 fsumdvdsmul 15227 lgsquadlem1 15318 lgsquadlem2 15319 | 
| Copyright terms: Public domain | W3C validator |