ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biort GIF version

Theorem biort 824
Description: A disjunction with a true formula is equivalent to that true formula. (Contributed by NM, 23-May-1999.)
Assertion
Ref Expression
biort (𝜑 → (𝜑 ↔ (𝜑𝜓)))

Proof of Theorem biort
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
2 orc 707 . 2 (𝜑 → (𝜑𝜓))
31, 22thd 174 1 (𝜑 → (𝜑 ↔ (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.55dc  908
  Copyright terms: Public domain W3C validator