| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2thd | GIF version | ||
| Description: Two truths are equivalent (deduction form). (Contributed by NM, 3-Jun-2012.) (Revised by NM, 29-Jan-2013.) |
| Ref | Expression |
|---|---|
| 2thd.1 | ⊢ (𝜑 → 𝜓) |
| 2thd.2 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| 2thd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2thd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 2thd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | pm5.1im 173 | . 2 ⊢ (𝜓 → (𝜒 → (𝜓 ↔ 𝜒))) | |
| 4 | 1, 2, 3 | sylc 62 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biort 834 rspcime 2914 abvor0dc 3515 exmidsssn 4285 euotd 4340 nn0eln0 4711 elabrex 5880 elabrexg 5881 riota5f 5980 nntri3 6641 fin0 7043 omp1eomlem 7257 ctssdccl 7274 ismkvnex 7318 finacn 7382 acnccim 7454 nn1m1nn 9124 xrlttri3 9989 nltpnft 10006 ngtmnft 10009 xrrebnd 10011 xltadd1 10068 xsubge0 10073 xposdif 10074 xlesubadd 10075 xleaddadd 10079 iccshftr 10186 iccshftl 10188 iccdil 10190 icccntr 10192 fzaddel 10251 elfzomelpfzo 10432 xqltnle 10482 nnesq 10876 hashnncl 11012 zfz1isolemiso 11056 swrdspsleq 11194 mod2eq1n2dvds 12385 m1exp1 12407 dfgcd3 12526 dvdssq 12547 pcdvdsb 12838 pceq0 12840 issubg3 13724 lmss 14914 lmres 14916 2omap 16318 |
| Copyright terms: Public domain | W3C validator |