ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2thd GIF version

Theorem 2thd 173
Description: Two truths are equivalent (deduction form). (Contributed by NM, 3-Jun-2012.) (Revised by NM, 29-Jan-2013.)
Hypotheses
Ref Expression
2thd.1 (𝜑𝜓)
2thd.2 (𝜑𝜒)
Assertion
Ref Expression
2thd (𝜑 → (𝜓𝜒))

Proof of Theorem 2thd
StepHypRef Expression
1 2thd.1 . 2 (𝜑𝜓)
2 2thd.2 . 2 (𝜑𝜒)
3 pm5.1im 171 . 2 (𝜓 → (𝜒 → (𝜓𝜒)))
41, 2, 3sylc 61 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  abvor0dc  3306  euotd  4081  nn0eln0  4433  elabrex  5537  riota5f  5632  nntri3  6258  fin0  6601  nn1m1nn  8440  xrlttri3  9267  nltpnft  9279  ngtmnft  9280  xrrebnd  9281  iccshftr  9411  iccshftl  9413  iccdil  9415  icccntr  9417  fzaddel  9473  elfzomelpfzo  9642  nnesq  10073  hashnncl  10204  zfz1isolemiso  10244  mod2eq1n2dvds  11157  m1exp1  11179  dfgcd3  11277  dvdssq  11298
  Copyright terms: Public domain W3C validator