Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2thd | GIF version |
Description: Two truths are equivalent (deduction form). (Contributed by NM, 3-Jun-2012.) (Revised by NM, 29-Jan-2013.) |
Ref | Expression |
---|---|
2thd.1 | ⊢ (𝜑 → 𝜓) |
2thd.2 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
2thd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2thd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 2thd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | pm5.1im 172 | . 2 ⊢ (𝜓 → (𝜒 → (𝜓 ↔ 𝜒))) | |
4 | 1, 2, 3 | sylc 62 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biort 819 rspcime 2836 abvor0dc 3431 exmidsssn 4180 euotd 4231 nn0eln0 4596 elabrex 5725 riota5f 5821 nntri3 6461 fin0 6847 omp1eomlem 7055 ctssdccl 7072 ismkvnex 7115 nn1m1nn 8871 xrlttri3 9729 nltpnft 9746 ngtmnft 9749 xrrebnd 9751 xltadd1 9808 xsubge0 9813 xposdif 9814 xlesubadd 9815 xleaddadd 9819 iccshftr 9926 iccshftl 9928 iccdil 9930 icccntr 9932 fzaddel 9990 elfzomelpfzo 10162 nnesq 10570 hashnncl 10705 zfz1isolemiso 10748 mod2eq1n2dvds 11812 m1exp1 11834 dfgcd3 11939 dvdssq 11960 pcdvdsb 12247 pceq0 12249 lmss 12846 lmres 12848 |
Copyright terms: Public domain | W3C validator |