| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2thd | GIF version | ||
| Description: Two truths are equivalent (deduction form). (Contributed by NM, 3-Jun-2012.) (Revised by NM, 29-Jan-2013.) |
| Ref | Expression |
|---|---|
| 2thd.1 | ⊢ (𝜑 → 𝜓) |
| 2thd.2 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| 2thd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2thd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 2thd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | pm5.1im 173 | . 2 ⊢ (𝜓 → (𝜒 → (𝜓 ↔ 𝜒))) | |
| 4 | 1, 2, 3 | sylc 62 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biort 830 rspcime 2875 abvor0dc 3475 exmidsssn 4236 euotd 4288 nn0eln0 4657 elabrex 5807 elabrexg 5808 riota5f 5905 nntri3 6564 fin0 6955 omp1eomlem 7169 ctssdccl 7186 ismkvnex 7230 finacn 7289 acnccim 7357 nn1m1nn 9027 xrlttri3 9891 nltpnft 9908 ngtmnft 9911 xrrebnd 9913 xltadd1 9970 xsubge0 9975 xposdif 9976 xlesubadd 9977 xleaddadd 9981 iccshftr 10088 iccshftl 10090 iccdil 10092 icccntr 10094 fzaddel 10153 elfzomelpfzo 10326 xqltnle 10376 nnesq 10770 hashnncl 10906 zfz1isolemiso 10950 mod2eq1n2dvds 12063 m1exp1 12085 dfgcd3 12204 dvdssq 12225 pcdvdsb 12516 pceq0 12518 issubg3 13400 lmss 14590 lmres 14592 2omap 15750 |
| Copyright terms: Public domain | W3C validator |