| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2thd | GIF version | ||
| Description: Two truths are equivalent (deduction form). (Contributed by NM, 3-Jun-2012.) (Revised by NM, 29-Jan-2013.) |
| Ref | Expression |
|---|---|
| 2thd.1 | ⊢ (𝜑 → 𝜓) |
| 2thd.2 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| 2thd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2thd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 2thd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | pm5.1im 173 | . 2 ⊢ (𝜓 → (𝜒 → (𝜓 ↔ 𝜒))) | |
| 4 | 1, 2, 3 | sylc 62 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biort 831 rspcime 2888 abvor0dc 3488 exmidsssn 4254 euotd 4307 nn0eln0 4676 elabrex 5839 elabrexg 5840 riota5f 5937 nntri3 6596 fin0 6997 omp1eomlem 7211 ctssdccl 7228 ismkvnex 7272 finacn 7332 acnccim 7404 nn1m1nn 9074 xrlttri3 9939 nltpnft 9956 ngtmnft 9959 xrrebnd 9961 xltadd1 10018 xsubge0 10023 xposdif 10024 xlesubadd 10025 xleaddadd 10029 iccshftr 10136 iccshftl 10138 iccdil 10140 icccntr 10142 fzaddel 10201 elfzomelpfzo 10382 xqltnle 10432 nnesq 10826 hashnncl 10962 zfz1isolemiso 11006 swrdspsleq 11143 mod2eq1n2dvds 12265 m1exp1 12287 dfgcd3 12406 dvdssq 12427 pcdvdsb 12718 pceq0 12720 issubg3 13603 lmss 14793 lmres 14795 2omap 16071 |
| Copyright terms: Public domain | W3C validator |