![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2thd | GIF version |
Description: Two truths are equivalent (deduction form). (Contributed by NM, 3-Jun-2012.) (Revised by NM, 29-Jan-2013.) |
Ref | Expression |
---|---|
2thd.1 | ⊢ (𝜑 → 𝜓) |
2thd.2 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
2thd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2thd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 2thd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | pm5.1im 173 | . 2 ⊢ (𝜓 → (𝜒 → (𝜓 ↔ 𝜒))) | |
4 | 1, 2, 3 | sylc 62 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biort 829 rspcime 2849 abvor0dc 3447 exmidsssn 4203 euotd 4255 nn0eln0 4620 elabrex 5759 riota5f 5855 nntri3 6498 fin0 6885 omp1eomlem 7093 ctssdccl 7110 ismkvnex 7153 nn1m1nn 8937 xrlttri3 9797 nltpnft 9814 ngtmnft 9817 xrrebnd 9819 xltadd1 9876 xsubge0 9881 xposdif 9882 xlesubadd 9883 xleaddadd 9887 iccshftr 9994 iccshftl 9996 iccdil 9998 icccntr 10000 fzaddel 10059 elfzomelpfzo 10231 nnesq 10640 hashnncl 10775 zfz1isolemiso 10819 mod2eq1n2dvds 11884 m1exp1 11906 dfgcd3 12011 dvdssq 12032 pcdvdsb 12319 pceq0 12321 issubg3 13052 lmss 13749 lmres 13751 |
Copyright terms: Public domain | W3C validator |