![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2thd | GIF version |
Description: Two truths are equivalent (deduction form). (Contributed by NM, 3-Jun-2012.) (Revised by NM, 29-Jan-2013.) |
Ref | Expression |
---|---|
2thd.1 | ⊢ (𝜑 → 𝜓) |
2thd.2 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
2thd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2thd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 2thd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | pm5.1im 173 | . 2 ⊢ (𝜓 → (𝜒 → (𝜓 ↔ 𝜒))) | |
4 | 1, 2, 3 | sylc 62 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biort 830 rspcime 2871 abvor0dc 3470 exmidsssn 4231 euotd 4283 nn0eln0 4652 elabrex 5800 elabrexg 5801 riota5f 5898 nntri3 6550 fin0 6941 omp1eomlem 7153 ctssdccl 7170 ismkvnex 7214 nn1m1nn 9000 xrlttri3 9863 nltpnft 9880 ngtmnft 9883 xrrebnd 9885 xltadd1 9942 xsubge0 9947 xposdif 9948 xlesubadd 9949 xleaddadd 9953 iccshftr 10060 iccshftl 10062 iccdil 10064 icccntr 10066 fzaddel 10125 elfzomelpfzo 10298 xqltnle 10336 nnesq 10730 hashnncl 10866 zfz1isolemiso 10910 mod2eq1n2dvds 12020 m1exp1 12042 dfgcd3 12147 dvdssq 12168 pcdvdsb 12458 pceq0 12460 issubg3 13262 lmss 14414 lmres 14416 |
Copyright terms: Public domain | W3C validator |