![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2thd | GIF version |
Description: Two truths are equivalent (deduction form). (Contributed by NM, 3-Jun-2012.) (Revised by NM, 29-Jan-2013.) |
Ref | Expression |
---|---|
2thd.1 | ⊢ (𝜑 → 𝜓) |
2thd.2 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
2thd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2thd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 2thd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | pm5.1im 171 | . 2 ⊢ (𝜓 → (𝜒 → (𝜓 ↔ 𝜒))) | |
4 | 1, 2, 3 | sylc 61 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: abvor0dc 3306 euotd 4081 nn0eln0 4433 elabrex 5537 riota5f 5632 nntri3 6258 fin0 6601 nn1m1nn 8440 xrlttri3 9267 nltpnft 9279 ngtmnft 9280 xrrebnd 9281 iccshftr 9411 iccshftl 9413 iccdil 9415 icccntr 9417 fzaddel 9473 elfzomelpfzo 9642 nnesq 10073 hashnncl 10204 zfz1isolemiso 10244 mod2eq1n2dvds 11157 m1exp1 11179 dfgcd3 11277 dvdssq 11298 |
Copyright terms: Public domain | W3C validator |