| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.55dc | GIF version | ||
| Description: A disjunction is equivalent to one of its disjuncts, given a decidable disjunct. Based on theorem *5.55 of [WhiteheadRussell] p. 125. (Contributed by Jim Kingdon, 30-Mar-2018.) |
| Ref | Expression |
|---|---|
| pm5.55dc | ⊢ (DECID 𝜑 → (((𝜑 ∨ 𝜓) ↔ 𝜑) ∨ ((𝜑 ∨ 𝜓) ↔ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 836 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 2 | biort 830 | . . . 4 ⊢ (𝜑 → (𝜑 ↔ (𝜑 ∨ 𝜓))) | |
| 3 | 2 | bicomd 141 | . . 3 ⊢ (𝜑 → ((𝜑 ∨ 𝜓) ↔ 𝜑)) |
| 4 | biorf 745 | . . . 4 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) | |
| 5 | 4 | bicomd 141 | . . 3 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) ↔ 𝜓)) |
| 6 | 3, 5 | orim12i 760 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → (((𝜑 ∨ 𝜓) ↔ 𝜑) ∨ ((𝜑 ∨ 𝜓) ↔ 𝜓))) |
| 7 | 1, 6 | sylbi 121 | 1 ⊢ (DECID 𝜑 → (((𝜑 ∨ 𝜓) ↔ 𝜑) ∨ ((𝜑 ∨ 𝜓) ↔ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 709 DECID wdc 835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |