ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con1dc GIF version

Theorem con1dc 858
Description: Contraposition for a decidable proposition. Based on theorem *2.15 of [WhiteheadRussell] p. 102. (Contributed by Jim Kingdon, 29-Mar-2018.)
Assertion
Ref Expression
con1dc (DECID 𝜑 → ((¬ 𝜑𝜓) → (¬ 𝜓𝜑)))

Proof of Theorem con1dc
StepHypRef Expression
1 notnot 630 . . 3 (𝜓 → ¬ ¬ 𝜓)
21imim2i 12 . 2 ((¬ 𝜑𝜓) → (¬ 𝜑 → ¬ ¬ 𝜓))
3 condc 855 . 2 (DECID 𝜑 → ((¬ 𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓𝜑)))
42, 3syl5 32 1 (DECID 𝜑 → ((¬ 𝜑𝜓) → (¬ 𝜓𝜑)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  DECID wdc 836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837
This theorem is referenced by:  impidc  860  simplimdc  862  con1biimdc  875  con1bdc  880  pm3.13dc  962  necon1aidc  2428  necon1bidc  2429  necon1addc  2453  necon1bddc  2454  exmidapne  7379  bitsinv1lem  12316  phiprmpw  12588  fldivp1  12715  prmpwdvds  12722
  Copyright terms: Public domain W3C validator