ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con1dc GIF version

Theorem con1dc 860
Description: Contraposition for a decidable proposition. Based on theorem *2.15 of [WhiteheadRussell] p. 102. (Contributed by Jim Kingdon, 29-Mar-2018.)
Assertion
Ref Expression
con1dc (DECID 𝜑 → ((¬ 𝜑𝜓) → (¬ 𝜓𝜑)))

Proof of Theorem con1dc
StepHypRef Expression
1 notnot 632 . . 3 (𝜓 → ¬ ¬ 𝜓)
21imim2i 12 . 2 ((¬ 𝜑𝜓) → (¬ 𝜑 → ¬ ¬ 𝜓))
3 condc 857 . 2 (DECID 𝜑 → ((¬ 𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓𝜑)))
42, 3syl5 32 1 (DECID 𝜑 → ((¬ 𝜑𝜓) → (¬ 𝜓𝜑)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  DECID wdc 838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839
This theorem is referenced by:  impidc  862  simplimdc  864  con1biimdc  877  con1bdc  882  pm3.13dc  964  necon1aidc  2431  necon1bidc  2432  necon1addc  2456  necon1bddc  2457  exmidapne  7414  bitsinv1lem  12438  phiprmpw  12710  fldivp1  12837  prmpwdvds  12844
  Copyright terms: Public domain W3C validator