Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > con1dc | GIF version |
Description: Contraposition for a decidable proposition. Based on theorem *2.15 of [WhiteheadRussell] p. 102. (Contributed by Jim Kingdon, 29-Mar-2018.) |
Ref | Expression |
---|---|
con1dc | ⊢ (DECID 𝜑 → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 624 | . . 3 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
2 | 1 | imim2i 12 | . 2 ⊢ ((¬ 𝜑 → 𝜓) → (¬ 𝜑 → ¬ ¬ 𝜓)) |
3 | condc 848 | . 2 ⊢ (DECID 𝜑 → ((¬ 𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓 → 𝜑))) | |
4 | 2, 3 | syl5 32 | 1 ⊢ (DECID 𝜑 → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 DECID wdc 829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 |
This theorem is referenced by: impidc 853 simplimdc 855 con1biimdc 868 con1bdc 873 pm3.13dc 954 necon1aidc 2391 necon1bidc 2392 necon1addc 2416 necon1bddc 2417 phiprmpw 12163 fldivp1 12287 prmpwdvds 12294 |
Copyright terms: Public domain | W3C validator |