Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-exlimmpi | GIF version |
Description: Lemma for bj-vtoclgf 13811. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-exlimmp.nf | ⊢ Ⅎ𝑥𝜓 |
bj-exlimmp.min | ⊢ (𝜒 → 𝜑) |
bj-exlimmpi.maj | ⊢ (𝜒 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
bj-exlimmpi | ⊢ (∃𝑥𝜒 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-exlimmp.nf | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | bj-exlimmp.min | . . 3 ⊢ (𝜒 → 𝜑) | |
3 | bj-exlimmpi.maj | . . 3 ⊢ (𝜒 → (𝜑 → 𝜓)) | |
4 | 2, 3 | mpd 13 | . 2 ⊢ (𝜒 → 𝜓) |
5 | 1, 4 | exlimi 1587 | 1 ⊢ (∃𝑥𝜒 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1453 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-gen 1442 ax-ie2 1487 ax-4 1503 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |