Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vtoclgf GIF version

Theorem bj-vtoclgf 15912
Description: Weakening two hypotheses of vtoclgf 2836. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
bj-vtoclgf.nf1 𝑥𝐴
bj-vtoclgf.nf2 𝑥𝜓
bj-vtoclgf.min (𝑥 = 𝐴𝜑)
bj-vtoclgf.maj (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
bj-vtoclgf (𝐴𝑉𝜓)

Proof of Theorem bj-vtoclgf
StepHypRef Expression
1 bj-vtoclgf.nf1 . . 3 𝑥𝐴
2 bj-vtoclgf.nf2 . . 3 𝑥𝜓
3 bj-vtoclgf.min . . 3 (𝑥 = 𝐴𝜑)
41, 2, 3bj-vtoclgft 15911 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝑉𝜓))
5 bj-vtoclgf.maj . 2 (𝑥 = 𝐴 → (𝜑𝜓))
64, 5mpg 1475 1 (𝐴𝑉𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wnf 1484  wcel 2178  wnfc 2337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778
This theorem is referenced by:  elabgf2  15916
  Copyright terms: Public domain W3C validator