Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vtoclgf GIF version

Theorem bj-vtoclgf 14799
Description: Weakening two hypotheses of vtoclgf 2807. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
bj-vtoclgf.nf1 𝑥𝐴
bj-vtoclgf.nf2 𝑥𝜓
bj-vtoclgf.min (𝑥 = 𝐴𝜑)
bj-vtoclgf.maj (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
bj-vtoclgf (𝐴𝑉𝜓)

Proof of Theorem bj-vtoclgf
StepHypRef Expression
1 bj-vtoclgf.nf1 . . 3 𝑥𝐴
2 bj-vtoclgf.nf2 . . 3 𝑥𝜓
3 bj-vtoclgf.min . . 3 (𝑥 = 𝐴𝜑)
41, 2, 3bj-vtoclgft 14798 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝑉𝜓))
5 bj-vtoclgf.maj . 2 (𝑥 = 𝐴 → (𝜑𝜓))
64, 5mpg 1461 1 (𝐴𝑉𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363  wnf 1470  wcel 2158  wnfc 2316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751
This theorem is referenced by:  elabgf2  14803
  Copyright terms: Public domain W3C validator