Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vtoclgf GIF version

Theorem bj-vtoclgf 15389
Description: Weakening two hypotheses of vtoclgf 2822. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
bj-vtoclgf.nf1 𝑥𝐴
bj-vtoclgf.nf2 𝑥𝜓
bj-vtoclgf.min (𝑥 = 𝐴𝜑)
bj-vtoclgf.maj (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
bj-vtoclgf (𝐴𝑉𝜓)

Proof of Theorem bj-vtoclgf
StepHypRef Expression
1 bj-vtoclgf.nf1 . . 3 𝑥𝐴
2 bj-vtoclgf.nf2 . . 3 𝑥𝜓
3 bj-vtoclgf.min . . 3 (𝑥 = 𝐴𝜑)
41, 2, 3bj-vtoclgft 15388 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝑉𝜓))
5 bj-vtoclgf.maj . 2 (𝑥 = 𝐴 → (𝜑𝜓))
64, 5mpg 1465 1 (𝐴𝑉𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wnf 1474  wcel 2167  wnfc 2326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765
This theorem is referenced by:  elabgf2  15393
  Copyright terms: Public domain W3C validator