| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-exlimmp | GIF version | ||
| Description: Lemma for bj-vtoclgf 15422. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-exlimmp.nf | ⊢ Ⅎ𝑥𝜓 |
| bj-exlimmp.min | ⊢ (𝜒 → 𝜑) |
| Ref | Expression |
|---|---|
| bj-exlimmp | ⊢ (∀𝑥(𝜒 → (𝜑 → 𝜓)) → (∃𝑥𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 1555 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝜒 → (𝜑 → 𝜓)) | |
| 2 | bj-exlimmp.nf | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | bj-exlimmp.min | . . . . 5 ⊢ (𝜒 → 𝜑) | |
| 4 | idd 21 | . . . . 5 ⊢ (𝜒 → (𝜓 → 𝜓)) | |
| 5 | 3, 4 | embantd 56 | . . . 4 ⊢ (𝜒 → ((𝜑 → 𝜓) → 𝜓)) |
| 6 | 5 | a2i 11 | . . 3 ⊢ ((𝜒 → (𝜑 → 𝜓)) → (𝜒 → 𝜓)) |
| 7 | 6 | sps 1551 | . 2 ⊢ (∀𝑥(𝜒 → (𝜑 → 𝜓)) → (𝜒 → 𝜓)) |
| 8 | 1, 2, 7 | exlimd 1611 | 1 ⊢ (∀𝑥(𝜒 → (𝜑 → 𝜓)) → (∃𝑥𝜒 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: bj-vtoclgft 15421 |
| Copyright terms: Public domain | W3C validator |