![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimi | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
exlimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | nfri 1530 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | exlimih 1604 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1471 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1460 ax-ie2 1505 ax-4 1521 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: 19.36i 1683 cbvexv1 1763 euexex 2127 ceqsex 2798 sbhypf 2809 vtoclgf 2818 vtoclg1f 2819 vtoclef 2833 copsexg 4273 copsex2g 4275 ralxpf 4808 rexxpf 4809 dmcoss 4931 fv3 5577 tz6.12c 5584 0neqopab 5963 cnvoprab 6287 bj-exlimmpi 15262 |
Copyright terms: Public domain | W3C validator |