![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimi | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
exlimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | nfri 1519 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | exlimih 1593 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1460 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1449 ax-ie2 1494 ax-4 1510 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: 19.36i 1672 cbvexv1 1752 euexex 2111 ceqsex 2777 sbhypf 2788 vtoclgf 2797 vtoclg1f 2798 vtoclef 2812 copsexg 4246 copsex2g 4248 ralxpf 4775 rexxpf 4776 dmcoss 4898 fv3 5540 tz6.12c 5547 0neqopab 5922 cnvoprab 6237 bj-exlimmpi 14607 |
Copyright terms: Public domain | W3C validator |