Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exlimi | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
exlimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | nfri 1507 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | exlimih 1581 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1448 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-gen 1437 ax-ie2 1482 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: 19.36i 1660 cbvexv1 1740 euexex 2099 ceqsex 2764 sbhypf 2775 vtoclgf 2784 vtoclg1f 2785 vtoclef 2799 copsexg 4222 copsex2g 4224 ralxpf 4750 rexxpf 4751 dmcoss 4873 fv3 5509 tz6.12c 5516 0neqopab 5887 cnvoprab 6202 bj-exlimmpi 13661 |
Copyright terms: Public domain | W3C validator |