Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exlimi | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
exlimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | nfri 1517 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | exlimih 1591 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1458 ∃wex 1490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1447 ax-ie2 1492 ax-4 1508 |
This theorem depends on definitions: df-bi 117 df-nf 1459 |
This theorem is referenced by: 19.36i 1670 cbvexv1 1750 euexex 2109 ceqsex 2773 sbhypf 2784 vtoclgf 2793 vtoclg1f 2794 vtoclef 2808 copsexg 4238 copsex2g 4240 ralxpf 4766 rexxpf 4767 dmcoss 4889 fv3 5530 tz6.12c 5537 0neqopab 5910 cnvoprab 6225 bj-exlimmpi 14062 |
Copyright terms: Public domain | W3C validator |