![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimi | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
exlimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | nfri 1467 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | exlimih 1540 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1404 ∃wex 1436 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-gen 1393 ax-ie2 1438 ax-4 1455 |
This theorem depends on definitions: df-bi 116 df-nf 1405 |
This theorem is referenced by: 19.36i 1618 euexex 2045 ceqsex 2679 sbhypf 2690 vtoclgf 2699 vtoclg1f 2700 vtoclef 2714 copsexg 4104 copsex2g 4106 ralxpf 4623 rexxpf 4624 dmcoss 4744 fv3 5376 tz6.12c 5383 0neqopab 5748 cnvoprab 6061 bj-exlimmpi 12559 |
Copyright terms: Public domain | W3C validator |