Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exlimi | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
exlimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | nfri 1512 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | exlimih 1586 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1453 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-gen 1442 ax-ie2 1487 ax-4 1503 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: 19.36i 1665 cbvexv1 1745 euexex 2104 ceqsex 2768 sbhypf 2779 vtoclgf 2788 vtoclg1f 2789 vtoclef 2803 copsexg 4229 copsex2g 4231 ralxpf 4757 rexxpf 4758 dmcoss 4880 fv3 5519 tz6.12c 5526 0neqopab 5898 cnvoprab 6213 bj-exlimmpi 13805 |
Copyright terms: Public domain | W3C validator |