| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimi | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
| exlimi.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | nfri 1543 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
| 3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | exlimih 1617 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1484 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1473 ax-ie2 1518 ax-4 1534 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: 19.36i 1696 cbvexv1 1776 euexex 2140 ceqsex 2812 sbhypf 2824 vtoclgf 2833 vtoclg1f 2834 vtoclef 2850 copsexg 4296 copsex2g 4298 ralxpf 4832 rexxpf 4833 dmcoss 4957 fv3 5612 tz6.12c 5619 0neqopab 6003 cnvoprab 6333 bj-exlimmpi 15845 |
| Copyright terms: Public domain | W3C validator |