| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimi | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
| exlimi.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | nfri 1565 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
| 3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | exlimih 1639 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1506 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1495 ax-ie2 1540 ax-4 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: 19.36i 1718 cbvexv1 1798 euexex 2163 ceqsex 2838 sbhypf 2850 vtoclgf 2859 vtoclg1f 2860 vtoclef 2876 copsexg 4329 copsex2g 4331 ralxpf 4867 rexxpf 4868 dmcoss 4993 fv3 5649 tz6.12c 5656 0neqopab 6048 cnvoprab 6378 bj-exlimmpi 16092 |
| Copyright terms: Public domain | W3C validator |