| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nnbidc | GIF version | ||
| Description: If a formula is not refutable, then it is decidable if and only if it is provable. See also comment of bj-nnbist 15400. (Contributed by BJ, 24-Nov-2023.) |
| Ref | Expression |
|---|---|
| bj-nnbidc | ⊢ (¬ ¬ 𝜑 → (DECID 𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-dcstab 15412 | . . 3 ⊢ (DECID 𝜑 → STAB 𝜑) | |
| 2 | bj-nnbist 15400 | . . 3 ⊢ (¬ ¬ 𝜑 → (STAB 𝜑 ↔ 𝜑)) | |
| 3 | 1, 2 | imbitrid 154 | . 2 ⊢ (¬ ¬ 𝜑 → (DECID 𝜑 → 𝜑)) |
| 4 | bj-trdc 15408 | . 2 ⊢ (𝜑 → DECID 𝜑) | |
| 5 | 3, 4 | impbid1 142 | 1 ⊢ (¬ ¬ 𝜑 → (DECID 𝜑 ↔ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 STAB wstab 831 DECID wdc 835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 |
| This theorem is referenced by: bj-dcdc 15415 bj-dcst 15417 |
| Copyright terms: Public domain | W3C validator |