Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnbidc GIF version

Theorem bj-nnbidc 13638
Description: If a formula is not refutable, then it is decidable if and only if it is provable. See also comment of bj-nnbist 13625. (Contributed by BJ, 24-Nov-2023.)
Assertion
Ref Expression
bj-nnbidc (¬ ¬ 𝜑 → (DECID 𝜑𝜑))

Proof of Theorem bj-nnbidc
StepHypRef Expression
1 bj-dcstab 13637 . . 3 (DECID 𝜑STAB 𝜑)
2 bj-nnbist 13625 . . 3 (¬ ¬ 𝜑 → (STAB 𝜑𝜑))
31, 2syl5ib 153 . 2 (¬ ¬ 𝜑 → (DECID 𝜑𝜑))
4 bj-trdc 13633 . 2 (𝜑DECID 𝜑)
53, 4impbid1 141 1 (¬ ¬ 𝜑 → (DECID 𝜑𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  STAB wstab 820  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825
This theorem is referenced by:  bj-dcdc  13640  bj-dcst  13642
  Copyright terms: Public domain W3C validator