![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbitrid | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 12-Jan-1993.) |
Ref | Expression |
---|---|
imbitrid.1 | ⊢ (𝜑 → 𝜓) |
imbitrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
imbitrid | ⊢ (𝜒 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbitrid.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | imbitrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 2 | biimpd 144 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) |
4 | 1, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: syl5ibcom 155 imbitrrid 156 sbft 1859 gencl 2792 spsbc 2998 prexg 4241 posng 4732 sosng 4733 optocl 4736 relcnvexb 5206 funimass1 5332 dmfex 5444 f1ocnvb 5515 eqfnfv2 5657 elpreima 5678 dff13 5812 f1ocnvfv 5823 f1ocnvfvb 5824 fliftfun 5840 eusvobj2 5905 mpoxopn0yelv 6294 rntpos 6312 erexb 6614 findcard2 6947 findcard2s 6948 xpfi 6988 sbthlemi3 7020 enq0tr 7496 addnqprllem 7589 addnqprulem 7590 distrlem1prl 7644 distrlem1pru 7645 recexprlem1ssl 7695 recexprlem1ssu 7696 elrealeu 7891 addcan 8201 addcan2 8202 neg11 8272 negreb 8286 mulcanapd 8682 receuap 8690 cju 8982 nn1suc 9003 nnaddcl 9004 nndivtr 9026 znegclb 9353 zaddcllempos 9357 zmulcl 9373 zeo 9425 uz11 9618 uzp1 9629 eqreznegel 9682 xneg11 9903 xnegdi 9937 modqadd1 10435 modqmul1 10451 frec2uzltd 10477 bccmpl 10828 fz1eqb 10864 eqwrd 10957 cj11 11052 rennim 11149 resqrexlemgt0 11167 efne0 11824 dvdsabseq 11992 pcfac 12491 divsfval 12914 grpinveu 13113 mulgass 13232 dvreq1 13641 unitrrg 13766 uptx 14453 hmeocnvb 14497 tgioo 14733 bj-nnbidc 15319 bj-prexg 15473 strcollnft 15546 |
Copyright terms: Public domain | W3C validator |