| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrid | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 12-Jan-1993.) |
| Ref | Expression |
|---|---|
| imbitrid.1 | ⊢ (𝜑 → 𝜓) |
| imbitrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| imbitrid | ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | imbitrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 2 | biimpd 144 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl5ibcom 155 imbitrrid 156 sbft 1872 gencl 2805 spsbc 3011 prexg 4259 posng 4751 sosng 4752 optocl 4755 relcnvexb 5227 funimass1 5356 dmfex 5472 f1ocnvb 5543 eqfnfv2 5685 elpreima 5706 dff13 5844 f1ocnvfv 5855 f1ocnvfvb 5856 fliftfun 5872 eusvobj2 5937 mpoxopn0yelv 6332 rntpos 6350 erexb 6652 findcard2 6993 findcard2s 6994 xpfi 7036 sbthlemi3 7068 enq0tr 7554 addnqprllem 7647 addnqprulem 7648 distrlem1prl 7702 distrlem1pru 7703 recexprlem1ssl 7753 recexprlem1ssu 7754 elrealeu 7949 addcan 8259 addcan2 8260 neg11 8330 negreb 8344 mulcanapd 8741 receuap 8749 cju 9041 nn1suc 9062 nnaddcl 9063 nndivtr 9085 znegclb 9412 zaddcllempos 9416 zmulcl 9433 zeo 9485 uz11 9678 uzp1 9689 eqreznegel 9742 xneg11 9963 xnegdi 9997 modqadd1 10513 modqmul1 10529 frec2uzltd 10555 bccmpl 10906 fz1eqb 10942 eqwrd 11041 cj11 11260 rennim 11357 resqrexlemgt0 11375 efne0 12033 dvdsabseq 12202 pcfac 12717 divsfval 13204 grpinveu 13414 mulgass 13539 dvreq1 13948 unitrrg 14073 uptx 14790 hmeocnvb 14834 tgioo 15070 bj-nnbidc 15767 bj-prexg 15921 strcollnft 15994 |
| Copyright terms: Public domain | W3C validator |