| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrid | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 12-Jan-1993.) |
| Ref | Expression |
|---|---|
| imbitrid.1 | ⊢ (𝜑 → 𝜓) |
| imbitrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| imbitrid | ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | imbitrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 2 | biimpd 144 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl5ibcom 155 imbitrrid 156 sbft 1894 gencl 2832 spsbc 3040 prexg 4295 posng 4791 sosng 4792 optocl 4795 relcnvexb 5268 funimass1 5398 dmfex 5517 f1ocnvb 5588 eqfnfv2 5735 elpreima 5756 dff13 5898 f1ocnvfv 5909 f1ocnvfvb 5910 fliftfun 5926 eusvobj2 5993 mpoxopn0yelv 6391 rntpos 6409 erexb 6713 findcard2 7059 findcard2s 7060 xpfi 7102 sbthlemi3 7134 enq0tr 7629 addnqprllem 7722 addnqprulem 7723 distrlem1prl 7777 distrlem1pru 7778 recexprlem1ssl 7828 recexprlem1ssu 7829 elrealeu 8024 addcan 8334 addcan2 8335 neg11 8405 negreb 8419 mulcanapd 8816 receuap 8824 cju 9116 nn1suc 9137 nnaddcl 9138 nndivtr 9160 znegclb 9487 zaddcllempos 9491 zmulcl 9508 zeo 9560 uz11 9753 uzp1 9764 eqreznegel 9817 xneg11 10038 xnegdi 10072 modqadd1 10591 modqmul1 10607 frec2uzltd 10633 bccmpl 10984 fz1eqb 11020 eqwrd 11120 ccatopth 11256 ccatopth2 11257 swrdccatin2 11269 cj11 11424 rennim 11521 resqrexlemgt0 11539 efne0 12197 dvdsabseq 12366 pcfac 12881 divsfval 13369 grpinveu 13579 mulgass 13704 dvreq1 14114 unitrrg 14239 uptx 14956 hmeocnvb 15000 tgioo 15236 uspgrf1oedg 15982 bj-nnbidc 16145 bj-prexg 16298 strcollnft 16371 |
| Copyright terms: Public domain | W3C validator |