| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrid | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 12-Jan-1993.) |
| Ref | Expression |
|---|---|
| imbitrid.1 | ⊢ (𝜑 → 𝜓) |
| imbitrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| imbitrid | ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | imbitrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 2 | biimpd 144 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl5ibcom 155 imbitrrid 156 sbft 1862 gencl 2795 spsbc 3001 prexg 4245 posng 4736 sosng 4737 optocl 4740 relcnvexb 5210 funimass1 5336 dmfex 5450 f1ocnvb 5521 eqfnfv2 5663 elpreima 5684 dff13 5818 f1ocnvfv 5829 f1ocnvfvb 5830 fliftfun 5846 eusvobj2 5911 mpoxopn0yelv 6306 rntpos 6324 erexb 6626 findcard2 6959 findcard2s 6960 xpfi 7002 sbthlemi3 7034 enq0tr 7520 addnqprllem 7613 addnqprulem 7614 distrlem1prl 7668 distrlem1pru 7669 recexprlem1ssl 7719 recexprlem1ssu 7720 elrealeu 7915 addcan 8225 addcan2 8226 neg11 8296 negreb 8310 mulcanapd 8707 receuap 8715 cju 9007 nn1suc 9028 nnaddcl 9029 nndivtr 9051 znegclb 9378 zaddcllempos 9382 zmulcl 9398 zeo 9450 uz11 9643 uzp1 9654 eqreznegel 9707 xneg11 9928 xnegdi 9962 modqadd1 10472 modqmul1 10488 frec2uzltd 10514 bccmpl 10865 fz1eqb 10901 eqwrd 10994 cj11 11089 rennim 11186 resqrexlemgt0 11204 efne0 11862 dvdsabseq 12031 pcfac 12546 divsfval 13032 grpinveu 13242 mulgass 13367 dvreq1 13776 unitrrg 13901 uptx 14596 hmeocnvb 14640 tgioo 14876 bj-nnbidc 15489 bj-prexg 15643 strcollnft 15716 |
| Copyright terms: Public domain | W3C validator |