| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrid | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 12-Jan-1993.) |
| Ref | Expression |
|---|---|
| imbitrid.1 | ⊢ (𝜑 → 𝜓) |
| imbitrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| imbitrid | ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | imbitrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 2 | biimpd 144 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl5ibcom 155 imbitrrid 156 sbft 1862 gencl 2795 spsbc 3001 prexg 4245 posng 4736 sosng 4737 optocl 4740 relcnvexb 5210 funimass1 5336 dmfex 5450 f1ocnvb 5521 eqfnfv2 5663 elpreima 5684 dff13 5818 f1ocnvfv 5829 f1ocnvfvb 5830 fliftfun 5846 eusvobj2 5911 mpoxopn0yelv 6306 rntpos 6324 erexb 6626 findcard2 6959 findcard2s 6960 xpfi 7002 sbthlemi3 7034 enq0tr 7518 addnqprllem 7611 addnqprulem 7612 distrlem1prl 7666 distrlem1pru 7667 recexprlem1ssl 7717 recexprlem1ssu 7718 elrealeu 7913 addcan 8223 addcan2 8224 neg11 8294 negreb 8308 mulcanapd 8705 receuap 8713 cju 9005 nn1suc 9026 nnaddcl 9027 nndivtr 9049 znegclb 9376 zaddcllempos 9380 zmulcl 9396 zeo 9448 uz11 9641 uzp1 9652 eqreznegel 9705 xneg11 9926 xnegdi 9960 modqadd1 10470 modqmul1 10486 frec2uzltd 10512 bccmpl 10863 fz1eqb 10899 eqwrd 10992 cj11 11087 rennim 11184 resqrexlemgt0 11202 efne0 11860 dvdsabseq 12029 pcfac 12544 divsfval 13030 grpinveu 13240 mulgass 13365 dvreq1 13774 unitrrg 13899 uptx 14594 hmeocnvb 14638 tgioo 14874 bj-nnbidc 15487 bj-prexg 15641 strcollnft 15714 |
| Copyright terms: Public domain | W3C validator |