| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrid | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 12-Jan-1993.) |
| Ref | Expression |
|---|---|
| imbitrid.1 | ⊢ (𝜑 → 𝜓) |
| imbitrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| imbitrid | ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | imbitrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 2 | biimpd 144 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl5ibcom 155 imbitrrid 156 sbft 1874 gencl 2812 spsbc 3020 prexg 4274 posng 4768 sosng 4769 optocl 4772 relcnvexb 5244 funimass1 5374 dmfex 5491 f1ocnvb 5562 eqfnfv2 5706 elpreima 5727 dff13 5865 f1ocnvfv 5876 f1ocnvfvb 5877 fliftfun 5893 eusvobj2 5960 mpoxopn0yelv 6355 rntpos 6373 erexb 6675 findcard2 7019 findcard2s 7020 xpfi 7062 sbthlemi3 7094 enq0tr 7589 addnqprllem 7682 addnqprulem 7683 distrlem1prl 7737 distrlem1pru 7738 recexprlem1ssl 7788 recexprlem1ssu 7789 elrealeu 7984 addcan 8294 addcan2 8295 neg11 8365 negreb 8379 mulcanapd 8776 receuap 8784 cju 9076 nn1suc 9097 nnaddcl 9098 nndivtr 9120 znegclb 9447 zaddcllempos 9451 zmulcl 9468 zeo 9520 uz11 9713 uzp1 9724 eqreznegel 9777 xneg11 9998 xnegdi 10032 modqadd1 10550 modqmul1 10566 frec2uzltd 10592 bccmpl 10943 fz1eqb 10979 eqwrd 11078 ccatopth 11214 ccatopth2 11215 swrdccatin2 11227 cj11 11382 rennim 11479 resqrexlemgt0 11497 efne0 12155 dvdsabseq 12324 pcfac 12839 divsfval 13327 grpinveu 13537 mulgass 13662 dvreq1 14071 unitrrg 14196 uptx 14913 hmeocnvb 14957 tgioo 15193 uspgrf1oedg 15939 bj-nnbidc 16031 bj-prexg 16184 strcollnft 16257 |
| Copyright terms: Public domain | W3C validator |