![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jaodan | GIF version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
Ref | Expression |
---|---|
jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
4 | 3 | ex 115 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
5 | 2, 4 | jaod 718 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
6 | 5 | imp 124 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpjaodan 799 ordi 817 andi 819 dcor 937 ccase 966 mpjao3dan 1318 relop 4813 poltletr 5067 tfrlemisucaccv 6380 tfr1onlemsucaccv 6396 tfrcllemsucaccv 6409 phplem3 6912 ssfilem 6933 diffitest 6945 reapmul1 8616 apsqgt0 8622 recexaplem2 8673 nnnn0addcl 9273 un0addcl 9276 un0mulcl 9277 elz2 9391 xrltso 9865 xaddnemnf 9926 xaddnepnf 9927 fzsplit2 10119 fzsuc2 10148 elfzp12 10168 seqf1oglem2 10594 expp1 10620 expnegap0 10621 expcllem 10624 mulexpzap 10653 expaddzap 10657 expmulzap 10659 zzlesq 10782 bcpasc 10840 xrltmaxsup 11403 xrmaxaddlem 11406 summodc 11529 fsumsplit 11553 fprodsplitdc 11742 ef0lem 11806 odd2np1 12017 dvdslcm 12210 lcmeq0 12212 lcmcl 12213 lcmneg 12215 lcmgcd 12219 rpexp1i 12295 pcid 12465 4sqlem16 12547 xpsfeq 12931 mulgneg 13213 mulgnn0z 13222 lgsdir2lem4 15188 lgsdir2 15190 lgsdirnn0 15204 lgsdinn0 15205 |
Copyright terms: Public domain | W3C validator |