| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaodan | GIF version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| Ref | Expression |
|---|---|
| jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | 3 | ex 115 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 5 | 2, 4 | jaod 718 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| 6 | 5 | imp 124 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaodan 799 ordi 817 andi 819 dcor 937 ccase 966 mpjao3dan 1318 relop 4817 poltletr 5071 tfrlemisucaccv 6392 tfr1onlemsucaccv 6408 tfrcllemsucaccv 6421 phplem3 6924 ssfilem 6945 diffitest 6957 reapmul1 8639 apsqgt0 8645 recexaplem2 8696 nnnn0addcl 9296 un0addcl 9299 un0mulcl 9300 elz2 9414 xrltso 9888 xaddnemnf 9949 xaddnepnf 9950 fzsplit2 10142 fzsuc2 10171 elfzp12 10191 seqf1oglem2 10629 expp1 10655 expnegap0 10656 expcllem 10659 mulexpzap 10688 expaddzap 10692 expmulzap 10694 zzlesq 10817 bcpasc 10875 xrltmaxsup 11439 xrmaxaddlem 11442 summodc 11565 fsumsplit 11589 fprodsplitdc 11778 ef0lem 11842 odd2np1 12055 dvdslcm 12262 lcmeq0 12264 lcmcl 12265 lcmneg 12267 lcmgcd 12271 rpexp1i 12347 pcid 12518 4sqlem16 12600 xpsfeq 13047 mulgneg 13346 mulgnn0z 13355 lgsdir2lem4 15356 lgsdir2 15358 lgsdirnn0 15372 lgsdinn0 15373 |
| Copyright terms: Public domain | W3C validator |