Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jaodan | GIF version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
Ref | Expression |
---|---|
jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 114 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
4 | 3 | ex 114 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
5 | 2, 4 | jaod 707 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
6 | 5 | imp 123 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpjaodan 788 ordi 806 andi 808 dcor 920 ccase 949 mpjao3dan 1289 relop 4733 poltletr 4983 tfrlemisucaccv 6266 tfr1onlemsucaccv 6282 tfrcllemsucaccv 6295 phplem3 6792 ssfilem 6813 diffitest 6825 reapmul1 8453 apsqgt0 8459 recexaplem2 8509 nnnn0addcl 9103 un0addcl 9106 un0mulcl 9107 elz2 9218 xrltso 9685 xaddnemnf 9743 xaddnepnf 9744 fzsplit2 9934 fzsuc2 9963 elfzp12 9983 expp1 10408 expnegap0 10409 expcllem 10412 mulexpzap 10441 expaddzap 10445 expmulzap 10447 bcpasc 10622 xrltmaxsup 11136 xrmaxaddlem 11139 summodc 11262 fsumsplit 11286 fprodsplitdc 11475 ef0lem 11539 odd2np1 11745 dvdslcm 11926 lcmeq0 11928 lcmcl 11929 lcmneg 11931 lcmgcd 11935 rpexp1i 12008 |
Copyright terms: Public domain | W3C validator |