| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaodan | GIF version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| Ref | Expression |
|---|---|
| jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | 3 | ex 115 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 5 | 2, 4 | jaod 722 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| 6 | 5 | imp 124 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaodan 803 ordi 821 andi 823 dcor 941 ccase 970 mpjao3dan 1341 relop 4871 poltletr 5128 tfrlemisucaccv 6469 tfr1onlemsucaccv 6485 tfrcllemsucaccv 6498 phplem3 7011 ssfilem 7033 diffitest 7045 pr1or2 7363 reapmul1 8738 apsqgt0 8744 recexaplem2 8795 nnnn0addcl 9395 un0addcl 9398 un0mulcl 9399 elz2 9514 xrltso 9988 xaddnemnf 10049 xaddnepnf 10050 fzsplit2 10242 fzsuc2 10271 elfzp12 10291 seqf1oglem2 10737 expp1 10763 expnegap0 10764 expcllem 10767 mulexpzap 10796 expaddzap 10800 expmulzap 10802 zzlesq 10925 bcpasc 10983 ccatass 11138 ccatrn 11139 ccatswrd 11197 ccatpfx 11228 cats1un 11248 xrltmaxsup 11763 xrmaxaddlem 11766 summodc 11889 fsumsplit 11913 fprodsplitdc 12102 ef0lem 12166 odd2np1 12379 dvdslcm 12586 lcmeq0 12588 lcmcl 12589 lcmneg 12591 lcmgcd 12595 rpexp1i 12671 pcid 12842 4sqlem16 12924 xpsfeq 13373 mulgneg 13672 mulgnn0z 13681 lgsdir2lem4 15704 lgsdir2 15706 lgsdirnn0 15720 lgsdinn0 15721 |
| Copyright terms: Public domain | W3C validator |