Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jaodan | GIF version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
Ref | Expression |
---|---|
jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 114 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
4 | 3 | ex 114 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
5 | 2, 4 | jaod 712 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
6 | 5 | imp 123 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpjaodan 793 ordi 811 andi 813 dcor 930 ccase 959 mpjao3dan 1302 relop 4761 poltletr 5011 tfrlemisucaccv 6304 tfr1onlemsucaccv 6320 tfrcllemsucaccv 6333 phplem3 6832 ssfilem 6853 diffitest 6865 reapmul1 8514 apsqgt0 8520 recexaplem2 8570 nnnn0addcl 9165 un0addcl 9168 un0mulcl 9169 elz2 9283 xrltso 9753 xaddnemnf 9814 xaddnepnf 9815 fzsplit2 10006 fzsuc2 10035 elfzp12 10055 expp1 10483 expnegap0 10484 expcllem 10487 mulexpzap 10516 expaddzap 10520 expmulzap 10522 bcpasc 10700 xrltmaxsup 11220 xrmaxaddlem 11223 summodc 11346 fsumsplit 11370 fprodsplitdc 11559 ef0lem 11623 odd2np1 11832 dvdslcm 12023 lcmeq0 12025 lcmcl 12026 lcmneg 12028 lcmgcd 12032 rpexp1i 12108 pcid 12277 lgsdir2lem4 13726 lgsdir2 13728 lgsdirnn0 13742 lgsdinn0 13743 |
Copyright terms: Public domain | W3C validator |