| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaodan | GIF version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| Ref | Expression |
|---|---|
| jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | 3 | ex 115 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 5 | 2, 4 | jaod 719 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| 6 | 5 | imp 124 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaodan 800 ordi 818 andi 820 dcor 938 ccase 967 mpjao3dan 1320 relop 4846 poltletr 5102 tfrlemisucaccv 6434 tfr1onlemsucaccv 6450 tfrcllemsucaccv 6463 phplem3 6976 ssfilem 6998 diffitest 7010 pr1or2 7328 reapmul1 8703 apsqgt0 8709 recexaplem2 8760 nnnn0addcl 9360 un0addcl 9363 un0mulcl 9364 elz2 9479 xrltso 9953 xaddnemnf 10014 xaddnepnf 10015 fzsplit2 10207 fzsuc2 10236 elfzp12 10256 seqf1oglem2 10702 expp1 10728 expnegap0 10729 expcllem 10732 mulexpzap 10761 expaddzap 10765 expmulzap 10767 zzlesq 10890 bcpasc 10948 ccatass 11102 ccatrn 11103 ccatswrd 11161 ccatpfx 11192 cats1un 11212 xrltmaxsup 11683 xrmaxaddlem 11686 summodc 11809 fsumsplit 11833 fprodsplitdc 12022 ef0lem 12086 odd2np1 12299 dvdslcm 12506 lcmeq0 12508 lcmcl 12509 lcmneg 12511 lcmgcd 12515 rpexp1i 12591 pcid 12762 4sqlem16 12844 xpsfeq 13292 mulgneg 13591 mulgnn0z 13600 lgsdir2lem4 15623 lgsdir2 15625 lgsdirnn0 15639 lgsdinn0 15640 |
| Copyright terms: Public domain | W3C validator |