| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaodan | GIF version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| Ref | Expression |
|---|---|
| jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | 3 | ex 115 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 5 | 2, 4 | jaod 718 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| 6 | 5 | imp 124 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaodan 799 ordi 817 andi 819 dcor 937 ccase 966 mpjao3dan 1318 relop 4817 poltletr 5071 tfrlemisucaccv 6392 tfr1onlemsucaccv 6408 tfrcllemsucaccv 6421 phplem3 6924 ssfilem 6945 diffitest 6957 reapmul1 8641 apsqgt0 8647 recexaplem2 8698 nnnn0addcl 9298 un0addcl 9301 un0mulcl 9302 elz2 9416 xrltso 9890 xaddnemnf 9951 xaddnepnf 9952 fzsplit2 10144 fzsuc2 10173 elfzp12 10193 seqf1oglem2 10631 expp1 10657 expnegap0 10658 expcllem 10661 mulexpzap 10690 expaddzap 10694 expmulzap 10696 zzlesq 10819 bcpasc 10877 xrltmaxsup 11441 xrmaxaddlem 11444 summodc 11567 fsumsplit 11591 fprodsplitdc 11780 ef0lem 11844 odd2np1 12057 dvdslcm 12264 lcmeq0 12266 lcmcl 12267 lcmneg 12269 lcmgcd 12273 rpexp1i 12349 pcid 12520 4sqlem16 12602 xpsfeq 13049 mulgneg 13348 mulgnn0z 13357 lgsdir2lem4 15380 lgsdir2 15382 lgsdirnn0 15396 lgsdinn0 15397 |
| Copyright terms: Public domain | W3C validator |