| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaodan | GIF version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| Ref | Expression |
|---|---|
| jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | 3 | ex 115 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 5 | 2, 4 | jaod 718 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| 6 | 5 | imp 124 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaodan 799 ordi 817 andi 819 dcor 937 ccase 966 mpjao3dan 1319 relop 4827 poltletr 5082 tfrlemisucaccv 6410 tfr1onlemsucaccv 6426 tfrcllemsucaccv 6439 phplem3 6950 ssfilem 6971 diffitest 6983 reapmul1 8667 apsqgt0 8673 recexaplem2 8724 nnnn0addcl 9324 un0addcl 9327 un0mulcl 9328 elz2 9443 xrltso 9917 xaddnemnf 9978 xaddnepnf 9979 fzsplit2 10171 fzsuc2 10200 elfzp12 10220 seqf1oglem2 10663 expp1 10689 expnegap0 10690 expcllem 10693 mulexpzap 10722 expaddzap 10726 expmulzap 10728 zzlesq 10851 bcpasc 10909 ccatass 11062 ccatrn 11063 xrltmaxsup 11539 xrmaxaddlem 11542 summodc 11665 fsumsplit 11689 fprodsplitdc 11878 ef0lem 11942 odd2np1 12155 dvdslcm 12362 lcmeq0 12364 lcmcl 12365 lcmneg 12367 lcmgcd 12371 rpexp1i 12447 pcid 12618 4sqlem16 12700 xpsfeq 13148 mulgneg 13447 mulgnn0z 13456 lgsdir2lem4 15479 lgsdir2 15481 lgsdirnn0 15495 lgsdinn0 15496 |
| Copyright terms: Public domain | W3C validator |