| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaodan | GIF version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| Ref | Expression |
|---|---|
| jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | 3 | ex 115 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 5 | 2, 4 | jaod 719 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| 6 | 5 | imp 124 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaodan 800 ordi 818 andi 820 dcor 938 ccase 967 mpjao3dan 1320 relop 4828 poltletr 5083 tfrlemisucaccv 6411 tfr1onlemsucaccv 6427 tfrcllemsucaccv 6440 phplem3 6951 ssfilem 6972 diffitest 6984 reapmul1 8668 apsqgt0 8674 recexaplem2 8725 nnnn0addcl 9325 un0addcl 9328 un0mulcl 9329 elz2 9444 xrltso 9918 xaddnemnf 9979 xaddnepnf 9980 fzsplit2 10172 fzsuc2 10201 elfzp12 10221 seqf1oglem2 10665 expp1 10691 expnegap0 10692 expcllem 10695 mulexpzap 10724 expaddzap 10728 expmulzap 10730 zzlesq 10853 bcpasc 10911 ccatass 11064 ccatrn 11065 ccatswrd 11123 xrltmaxsup 11568 xrmaxaddlem 11571 summodc 11694 fsumsplit 11718 fprodsplitdc 11907 ef0lem 11971 odd2np1 12184 dvdslcm 12391 lcmeq0 12393 lcmcl 12394 lcmneg 12396 lcmgcd 12400 rpexp1i 12476 pcid 12647 4sqlem16 12729 xpsfeq 13177 mulgneg 13476 mulgnn0z 13485 lgsdir2lem4 15508 lgsdir2 15510 lgsdirnn0 15524 lgsdinn0 15525 |
| Copyright terms: Public domain | W3C validator |