| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaodan | GIF version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| Ref | Expression |
|---|---|
| jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | 3 | ex 115 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 5 | 2, 4 | jaod 718 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| 6 | 5 | imp 124 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaodan 799 ordi 817 andi 819 dcor 937 ccase 966 mpjao3dan 1318 relop 4816 poltletr 5070 tfrlemisucaccv 6383 tfr1onlemsucaccv 6399 tfrcllemsucaccv 6412 phplem3 6915 ssfilem 6936 diffitest 6948 reapmul1 8622 apsqgt0 8628 recexaplem2 8679 nnnn0addcl 9279 un0addcl 9282 un0mulcl 9283 elz2 9397 xrltso 9871 xaddnemnf 9932 xaddnepnf 9933 fzsplit2 10125 fzsuc2 10154 elfzp12 10174 seqf1oglem2 10612 expp1 10638 expnegap0 10639 expcllem 10642 mulexpzap 10671 expaddzap 10675 expmulzap 10677 zzlesq 10800 bcpasc 10858 xrltmaxsup 11422 xrmaxaddlem 11425 summodc 11548 fsumsplit 11572 fprodsplitdc 11761 ef0lem 11825 odd2np1 12038 dvdslcm 12237 lcmeq0 12239 lcmcl 12240 lcmneg 12242 lcmgcd 12246 rpexp1i 12322 pcid 12493 4sqlem16 12575 xpsfeq 12988 mulgneg 13270 mulgnn0z 13279 lgsdir2lem4 15272 lgsdir2 15274 lgsdirnn0 15288 lgsdinn0 15289 |
| Copyright terms: Public domain | W3C validator |