| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaodan | GIF version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| Ref | Expression |
|---|---|
| jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | 3 | ex 115 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 5 | 2, 4 | jaod 718 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| 6 | 5 | imp 124 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaodan 799 ordi 817 andi 819 dcor 937 ccase 966 mpjao3dan 1318 relop 4817 poltletr 5071 tfrlemisucaccv 6384 tfr1onlemsucaccv 6400 tfrcllemsucaccv 6413 phplem3 6916 ssfilem 6937 diffitest 6949 reapmul1 8624 apsqgt0 8630 recexaplem2 8681 nnnn0addcl 9281 un0addcl 9284 un0mulcl 9285 elz2 9399 xrltso 9873 xaddnemnf 9934 xaddnepnf 9935 fzsplit2 10127 fzsuc2 10156 elfzp12 10176 seqf1oglem2 10614 expp1 10640 expnegap0 10641 expcllem 10644 mulexpzap 10673 expaddzap 10677 expmulzap 10679 zzlesq 10802 bcpasc 10860 xrltmaxsup 11424 xrmaxaddlem 11427 summodc 11550 fsumsplit 11574 fprodsplitdc 11763 ef0lem 11827 odd2np1 12040 dvdslcm 12247 lcmeq0 12249 lcmcl 12250 lcmneg 12252 lcmgcd 12256 rpexp1i 12332 pcid 12503 4sqlem16 12585 xpsfeq 12998 mulgneg 13280 mulgnn0z 13289 lgsdir2lem4 15282 lgsdir2 15284 lgsdirnn0 15298 lgsdinn0 15299 |
| Copyright terms: Public domain | W3C validator |