Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jaodan | GIF version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
Ref | Expression |
---|---|
jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 114 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
4 | 3 | ex 114 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
5 | 2, 4 | jaod 707 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
6 | 5 | imp 123 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpjaodan 788 ordi 806 andi 808 dcor 925 ccase 954 mpjao3dan 1297 relop 4753 poltletr 5003 tfrlemisucaccv 6289 tfr1onlemsucaccv 6305 tfrcllemsucaccv 6318 phplem3 6816 ssfilem 6837 diffitest 6849 reapmul1 8489 apsqgt0 8495 recexaplem2 8545 nnnn0addcl 9140 un0addcl 9143 un0mulcl 9144 elz2 9258 xrltso 9728 xaddnemnf 9789 xaddnepnf 9790 fzsplit2 9981 fzsuc2 10010 elfzp12 10030 expp1 10458 expnegap0 10459 expcllem 10462 mulexpzap 10491 expaddzap 10495 expmulzap 10497 bcpasc 10675 xrltmaxsup 11194 xrmaxaddlem 11197 summodc 11320 fsumsplit 11344 fprodsplitdc 11533 ef0lem 11597 odd2np1 11806 dvdslcm 11997 lcmeq0 11999 lcmcl 12000 lcmneg 12002 lcmgcd 12006 rpexp1i 12082 pcid 12251 lgsdir2lem4 13532 lgsdir2 13534 lgsdirnn0 13548 lgsdinn0 13549 |
Copyright terms: Public domain | W3C validator |