Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bimsc1 | GIF version |
Description: Removal of conjunct from one side of an equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bimsc1 | ⊢ (((𝜑 → 𝜓) ∧ (𝜒 ↔ (𝜓 ∧ 𝜑))) → (𝜒 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . 4 ⊢ ((𝜓 ∧ 𝜑) → 𝜑) | |
2 | ancr 319 | . . . 4 ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜓 ∧ 𝜑))) | |
3 | 1, 2 | impbid2 142 | . . 3 ⊢ ((𝜑 → 𝜓) → ((𝜓 ∧ 𝜑) ↔ 𝜑)) |
4 | 3 | bibi2d 231 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜒 ↔ (𝜓 ∧ 𝜑)) ↔ (𝜒 ↔ 𝜑))) |
5 | 4 | biimpa 294 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 ↔ (𝜓 ∧ 𝜑))) → (𝜒 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bm1.3ii 4110 bdbm1.3ii 13926 |
Copyright terms: Public domain | W3C validator |